Michel Baudin's Blog
Ideas from manufacturing operations
  • Home
  • Home
  • About the author
  • Ask a question
  • Consulting
  • Courses
  • Leanix™ games
  • Sponsors
  • Meetup group

Mar 31 2019

Industry 4.0 versus Manufacturing Improvement (Part 1)

Elon Musk

There is a lesson that manufacturing leaders seem determined to learn the hard way: flooding factories with new technology does not improve their performance.

Roger Smith learned it at GM in the 1980s. Elon Musk, for all his other achievements, admitted by tweet to making the same mistake at Tesla last year.

To really improve manufacturing performance, you start with, as Crispin Vincenti-Brown put it, with “what happens when the guy picks up the wrench.” You work with that person to make the work easier, faster, safer, and less prone to deviations and errors. In doing this, you apply, as needed, technology you can afford that operators can work with.

This is hard work but it pays off. It is a key lesson learned from Toyota, TPS, and many companies that implemented it under the “Lean” label. But it’s an eat-your-vegetables message. The lure of a technological shortcut is irresistible.

Continue reading…

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Information Technology • 17 • Tags: Digital Transformation, Industry 4.0, Lean, TPS

Mar 25 2019

Are Robots Competing for Your Job? | Jill Lepore | The New Yorker

Christoph Niemann

“The robots are coming. Hide the WD-40. Lock up your nine-volt batteries. Build a booby trap out of giant magnets; dig a moat as deep as a grave. “Ever since a study by the University of Oxford predicted that 47 percent of U.S. jobs are at risk of being replaced by robots and artificial intelligence over the next fifteen to twenty years, I haven’t been able to stop thinking about the future of work,” Andrés Oppenheimer writes, in “The Robots Are Coming: The Future of Jobs in the Age of Automation” (Vintage). No one is safe. ”

Source: The New Yorker

Michel Baudin‘s comments:

In this article, Jill Lepore skewers the countless gurus who, for the past 100 years, have been predicting a future in which robots have eliminated all jobs, manufacturing or not. While Lepore does not go back that far, “Robot” is a word from science fiction, specifically Karel Čapek’s 1920 play Rossum’s Universal Robots. In this play, robots actually kill off humans.

Continue reading…

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Automation • 1 • Tags: Automation, Employment, robots

Mar 12 2019

More About the Math of the Process Behavior Chart

In statistics on time series with “moving” in their name, each value is correlated with past and future neighbors — that is, the series is autocorrelated. It affects the way you can use these statistics to detect anomalies and issue alarms.

The moving range in the XmR chart is a case in point. Its autocorrelation in the moving range chart is self-inflicted. It is autocorrelated by construction, regardless of whether the raw data themselves are.

Some raw data are autocorrelated. For example, when you issue a replenishment order for a part by pulling a Kanban from a bin, you are assuming that the demand for a coming period to match that of the period that just elapsed, with minor fluctuations. Implicitly, you are leveraging the autocorrelation of the part consumption across periods.

On the other hand, if a physical characteristic of a manufactured part is the sum of a constant and noise, then the noises are independent, and therefore uncorrelated. Taking moving ranges introduces an autocorrelation between consecutive values that is absent in the raw data.

Continue reading…

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Data science • 7 • Tags: Autoregression, Control Charts, SPC, XmR

Mar 2 2019

The Math Behind The Process Behavior Chart

Ever since asking Is SPC Obsolete? on this blog almost 6 years ago, multiple sources have told me that the XmR chart is a wonderful and currently useful process behavior chart, universally applicable, a data analysis panacea, requiring no assumption on the structure of the monitored variables. So I dug into it and this what I found.

Continue reading…

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Data science • 45 • Tags: Process Behavior Chart, SPC, XmR Chart

Feb 27 2019

Analysis of Oscar TV Viewership | Mark Graban | LinkedIn

“Initial analysis says Oscars TV viewers and ratings are up over 2018. But, for context, the ratings were DOWN in 2018 compared to 2017.

Instead of reacting to each new data point, look at trends over time using “run charts” or “process behavior charts” (as I created). Did having “no host” make any statistically significant difference in ratings? No. The numbers are just fluctuating. Don’t waste time cooking up an explanation for ‘noise’ in a metric.”

Mark Graban’s Oscar Viewership Chart

 

 

Source: LinkedIn

Michel Baudin‘s comments: What happened between 2004 and 2005? Visually, the downward step is the one feature of the chart that stands out. If the technique Mark used is valid, there should be assignable causes from that period to explain the drop. If you forget the green and red lines and just look at the time series, however, a smooth, long-term downward trend sounds like a better fit. Perhaps Mark should try more modern trend analysis tools besides the venerable XmR chart.

Following a day of spirited discussion, Mark sent me the data and asked for my own analysis, which is in the chart below. The gray band is a 99% confidence interval, calculated without any knowledge of the nature of the numbers. The points outside the band can be assumed to have assignable causes for their unusual high or low ratings, and I took a look at the press reports on a few. As you can see, there is nothing special happening in 2004-2005. 

The popularity of a show has nothing to do with a critical dimension on a manufactured part, which is supposed to be constant. The plant organization has the authority to do what it takes to keep it that way. There is no reason why show ratings should be constant.

In addition, while a length measurement qualifies as a raw data point, the published number of viewers of a TV show doesn’t. In the US, it is an estimate based on a poll of 5,000 households. Viewership of the Oscars ceremony in 2019 was 11.5% higher than in 2018. On 5,000 data points, it does not look like a fluctuation. By comparison, political polls use samples of 1,000 to 1,500 voters and claim margins of error of ±3%.

The viewership estimates aren’t just numbers in a table, and you can’t interpret them properly without knowing their backstory.

#SPC, #XmRChart, #ProcessBehaviorChart

Continue reading…

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Blog clippings • 2 • Tags: Process Behavior Chart, SPC, XmR Chart

Lindner factory

Feb 11 2019

Seeing Germany’s factories | Kazuo Kumabe | May, 1936

The author, Kazuo Kumabe was a classmate of Kiichiro Toyoda at Tokyo Imperial University and a researcher on car engines, who was involved with R&D for Toyota from 1936 to the early 1950s. The German influence on Toyota’s product technology and design can be traced to him.

DKW F5 1936

In 1936, he was instrumental in bringing a DKW car to Japan and disassembling it. Today, the DKW brand lives on as Audi. In 1947, Kumabe we the was the chief designer of the SA, Toyota’s first post-war model, inspired by the Volkswagen Beetle several years before high-volume production actually started on the beetle. Kumabe wrote this article for the Machine and Electricity magazine (Kikai oyobi Denki, 機械及び電気) in May, 1936 as a summary of a tour of German factories in late 1935.

Toyota SA

It’s brief and does not go into any of the details of what he learned. It does not even give the dates of this trip.

Continue reading…

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • History • 7 • Tags: German factories, Kazuo Kumabe, Kiichiro Toyoda, Toyota

«< 16 17 18 19 20 >»

Follow Blog via Email

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 579 other subscribers

Recent Posts

  • Using Regression to Improve Quality | Part III — Validating Models
  • Rebuilding Manufacturing in France | Radu Demetrescoux
  • Using Regression to Improve Quality | Part II – Fitting Models
  • Using Regression to Improve Quality | Part I – What for?
  • Rankings and Bump Charts

Categories

  • Announcements
  • Answers to reader questions
  • Asenta selection
  • Automation
  • Blog clippings
  • Blog reviews
  • Book reviews
  • Case studies
  • Data science
  • Deming
  • Events
  • History
  • Information Technology
  • Laws of nature
  • Management
  • Metrics
  • News
  • Organization structure
  • Personal communications
  • Policies
  • Polls
  • Press clippings
  • Quality
  • Technology
  • Tools
  • Training
  • Uncategorized
  • Van of Nerds
  • Web scrapings

Social links

  • Twitter
  • Facebook
  • Google+
  • LinkedIn

My tags

5S Automation Autonomation Cellular manufacturing Continuous improvement data science Deming ERP Ford Government Health care industrial engineering Industry 4.0 Information technology IT jidoka Kaizen Kanban Lean Lean assembly Lean Health Care Lean implementation Lean Logistics Lean management Lean manufacturing Logistics Management Manufacturing Manufacturing engineering Metrics Mistake-Proofing Poka-Yoke Quality Six Sigma SMED SPC Standard Work Strategy Supply Chain Management Takt time Toyota Toyota Production System TPS Training VSM

↑

© Michel Baudin's Blog 2025
Powered by WordPress • Themify WordPress Themes
%d