Jun 21 2013
Using videos to improve operations | Part 6 – Quick simograms
Here, we finally start collecting measurements from the video, focusing on what we can collect while watching without stopping. In this mode, we can break down operator time by broad categories like “Waiting,” “Walking,” or “Assembling,” but we don’t have the time to name each task and collect comments or improvement ideas. This will require a more detailed and time-consuming analysis.
One method, developed by Christophe Caberlon, involves two analysts, one viewing the video and the other one filling out an electronic spreadsheet. Instead of looking for state-change events in the video, we look at it in 5-second increments. Every five seconds, the analyst viewing the video calls out the state the operator has been in since the previous call. Each 5-second. Interval is assigned one column in the spreadsheet and there is one row for each state. Based on the call, the second analyst switches the color of the cell for the state and time interval.
Counting in 5-second intervals involves aliasing, but it is not a problem for a rough-cut estimate. The rows in the spreadsheet do show the state transitions in a Gantt-chart like format called “simogram,” and can summarized into proportions of time spent in each state, as in the following example:
This example uses cell background color to express content, which is not generally recommended because Excel does not provide built-in tools either for quick input or for analysis. The result, however, is graphically much more attractive than filling the cells with Xs. Changing the background color of a cell requires multiple steps, which cannot be repeated every five seconds. These steps, however can be recorded as a Macro. In this example, the macro has Ctrl+q as a hot key to mark a cell and Ctrl+w to unmark it. Also, each 5-second time segment must be assigned to one and only one category. When working your way through a video, it is impossible to avoid cases where one segment will be missed and another accidentally assigned to more than one category.
To detect these errors, we need to count the gray cells by column, and to summarize the times into relevant aggregates, we need to count them by rows. While Excel provides no built-in function to do this, you can find add-on modules to do it. The modules used above are due to C. Pearson.
This method is also restricted in the number of states to track. It is feasible for two or three but not fifteen. With the limited number of choices, it is a good idea to include an “Other” state. The states should also be clear and unambiguous, such as:
- Walking: the operator’s legs are moving.
- Working: the operator’s hands are moving.
- Waiting: all the operator’s limbs are still.
- Touching: One of the operator’s hands is touching the product.
Categories that are abstract and subject to interpretation, like “Value-added” should be avoided. Note also that an operator who is Working or Touching, may be handling the work piece or transforming it, and we don’t have enough categories at this level to make the difference.
Timer Pro provides a method called “Non-stop timing,” in which the analyst simply clicks on a category when observing a state transition, and the time since the previous click is automatically assigned to this category. This eliminates the aliasing due to using 5-second intervals, and relieves one analyst from the task of clicking the right spreadsheet cell every 5 seconds.
Jan 2 2014
Lean and Management Processes
An online sparring partner of 15 years, Bill Waddell, concluded our latest exchange with the following:It is a 3-step progression: first, Bill makes a general statement of what Lean is, then he points out a serious shortcoming in my thinking, and finally he misspells my name.
As I am not trying to go global cosmic with Lean but instead remain focused on Manufacturing, rather than Bill’s three elements, I see Lean as having the four dimensions identified by Crispin Vincenti-Brown. Whatever you do has some content in each of the following:
Attention must be appropriately balanced in all of these dimensions and, if one is under-appreciated in the US, it is Engineering, not Management. Metrics and organization issues hog the attention; what little is left over goes towards Logistics and Production Control, and Engineering is taken for granted. The tail is wagging the dog, and reality bites back in the form of implementation failures.
What is a management process, and how does it differ from a tool? The term sounds like standard management speak, but, if you google it, the only unqualified reference to it that comes up is in Wikipedia, where it is defined as “a process of planning and controlling the organizing and leading execution of any type of activity.”
Since Henri Fayol, however, we have all been taught that the job of all managers is to plan, organize, control, and lead. In those terms, there doesn’t seem to be any difference between a “management process” and just “management.” All other Google responses are for the processes of managing different functions, like the “Project Management Process,” “Performance Management Process,” “Change Management Process,” or the “A3 Management Process.” The corresponding images are a variety of box-and-arrow diagrams, pyramids, wheel charts, dish charts, and waterfalls/swim lanes, as in the following examples:
A manufacturing process is the network of tasks to make a product from materials — with routes that merge, branch, and sometimes even loop. A business process, likewise, is a network of tasks to turn inputs into outputs, like the order fulfillment process that turns customer orders into deliveries. A political process is also a network of tasks leading to a particular result, like the election of a president or the approval of a budget. So, what about a management process? And what is the level of appreciation that it deserves?
Bill is the one who should really explain it, but, if I were to use this term, at the most basic level it would be for what I have been calling protocols, by which I mean the part of management work that is done by applying sets of rules or procedures rather than making judgement calls. They are pre-planned responses to events that might occur but are not part of routine operations. It can be the arrival of a new member into a team, the failure of a truck to show up, or a quality emergency.
This is the spirit of Toyota’s Change Point Management (CPM), in which the pre-planned responses are prepared by the teams that are potentially affected by the events and posted in the team’s work place. When the event occurs. all you have to do is retrieve the plan and you know what to do. And it is usually a better plan than what you would have improvised in the heat of the moment.
At a higher level, I would call process a protocol used to organize the way you make judgment calls. You can’t set the strategy of a company by applying rules, but you can use Hoshin Planning to organize the way you do it. A process like Hoshin Planning is akin to the rules of a game; it doesn’t determine how well the managers play. If they just comply with a mandate and go through the motions, they will produce a certain result. If, on the other hand, they understand what they are doing, connect it to their own work, and see the value in it, then they will produce a different result.
A good process does not guarantee a good outcome, and great teams have been able to coax performance out of dysfunctional processes. What is the proper level of appreciation for these management processes? Clearly, there is more to management than processes, and the best managers are those who excel at endeavors for which there is no script.
I learned to appreciate the relationship between management and engineering in Manufacturing from working with my mentor, Kei Abe. When he took me on as a junior partner in 1987, one of the first things I learned from him was to approach problems in a holistic manner, simultaneously at the technical and the managerial levels. I saw him coach a shop floor team on the details of SMED in the morning, and the board of directors on company strategy in the afternoon. It’s not a common mix of skills, but I believe it is what a manufacturing consultant should have.
Share this:
Like this:
By Michel Baudin • Management • 9 • Tags: industrial engineering, Kei Abe, Logistics, Management, Manufacturing engineering, Metrics, Toyota