Oct 25 2011
The steam locomotive and the typewriter
The first draft of my book Working with Machines contained a chapter that was a post-mortem on two obsolete machines, which was cut on the grounds that, unlike all other chapters, it was not actionable for the reader.
Its abstract is as follows:
The steam locomotive and the typewriter are icons of the industrial age, and their parallel histories show different aspects of the human experience of working with machines. The steam locomotive is fondly remembered; the typewriter, all but forgotten except for the QWERTY keyboard. The steam engine participated in the development of every industrial economy, but the typewriter played no major role in Japan. The typewriter did not demonstrably improve the productivity or quality of office output, but was adopted only because of its image of modernity.
Locomotive driver was a prestigious position for a manual laborer, but typist never was. Compared to electrics and diesels, the steam locomotive had a cab that was exposed to the elements and to the heat of the firebox and therefore uncomfortable, difficult to operate, and dangerous. Yet engineers and firemen preferred it to the tedium and loneliness of modern locomotives. Automatic machines that require human attention only when they malfunction are also in airplanes and in manufacturing plants, challenging the job designer to keep the operator alert and used efficiently.
As the typewriter prints one keystroke at a time, typists were always busy with a single machine and determined both its productivity and output quality. Typists worked in comfortable places, but under pressure, and faced the long-term hazards of sedentary work. The typewriter’s main legacy is that a society can make a long-term investment in machines whose tangible benefits do not obviously exceed their costs.
Click here for a pdf file of the entire chapter.
Oct 26 2011
Data Mining in Manufacturing versus the Web
Data mining, in general, is the retrieval of information from data collected for a different purpose, such as using sales transaction histories to infer what products tend to be bought together. By contrast, design of experiments involves the collection of observations for the purpose of confirming or refuting hypotheses.
This perspective on data mining is consistent with the literature in expressing purpose, but most authors go further. They include in their definitions that data mining is done with computers, using large databases and specific analytical tools, which I think is too restrictive. The tools they list are the ones they have found useful in analyzing the behavior of millions of users of search engines or commerce websites, and they are not obviously applicable in other areas, such as manufacturing.
During World War II, British analysts used the serial numbers of captured or destroyed German tanks to estimate the numbers produced. Because serial numbers were not attached for this purpose, it was data mining. It used clever statistical models but, obviously, no computers.
Today, PhD-level data miners at Google, eBay, or Amazon sift through the page views and click-throughs of millions of users for clues to patterns they can use. The data, automatically collected, is accurate and collected by the terabytes every day. This “big data” requires parallel processing on clusters of computers and lends itself to the most advanced analytical tools ever developed.
Compared to this fire hose of data, what manufacturing produces is a trickle. In a factory, the master data/technical specs, plans and schedules, status of operations and work in process, and the history of production over, say, 12 months, usually adds up to a few gigabytes. It doesn’t fit on one spreadsheet, but it often does on a memory stick. On the other hand, much of it is still manually generated and therefore contains errors, and it is often structured in ways that make it difficult to work with.
Even if manufacturing companies could hire the data miners away from their current jobs, their experience with e-commerce or web search would not have prepared them well for the different challenges of manufacturing data mining.
There is an opportunity for data mining to contribute to competitiveness in manufacturing, but the approach must start from the needs. It must not be an e-commerce cure in search of manufacturing diseases.
Share this:
Like this:
By Michel Baudin • Technology • 0 • Tags: Data mining, Lean manufacturing, Manufactuting