Michel Baudin's Blog
Ideas from manufacturing operations
  • Home
  • Home
  • About the author
  • Ask a question
  • Consulting
  • Courses
  • Leanix™ games
  • Sponsors
  • Meetup group
Building-the-team-The-Doudna-Charpentier-collaboration-is-sealed-on-the-steps-of-Stanley2

Aug 29 2021

Distributed Teams Can Work After All

The 2012 paper in Science about the CRISPR/Cas9 system has been hailed as the greatest breakthrough in biology since Crick and Watson’s discovery of the DNA double helix in 1953. It has earned its two Principal Investigators (PI), Emmanuelle Charpentier and Jennifer Doudna, the 2020 Nobel prize in chemistry. Laypersons cannot really follow this paper but what we can better understand is how the research team worked. And it is remarkable.

Continue reading…

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Management • 1 • Tags: Project management, Team

Looking glass 2

Aug 27 2021

Sales Forecasts – Part 3. Generating Probability Forecasts

My last two long posts were about evaluating sales forecasts. They begged the question of how you generate these forecasts. This is a partial answer, about what you can tell from a history of sales through both classical methods and recent developments, particularly probability forecasting.

 

Continue reading…

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Data science • 0 • Tags: Demand Forecast, Probability Forecast, Sales forecast

Jul 31 2021

Follett in 1924: Use Operators’ Knowledge

Mary Parker Follett

 

Almost 100 years ago, Mary Parker Follett wrote: “And our aim in the […] organization of industry should be […] so to organize the plant that the workmen’s experience can be added to that of the expert; we must see just where their experience will be a plus matter, and we must plan to have the workmen learn more and more of the industry as a whole.” 

Source: Follett, M. P. (2013 reprint). Creative Experience. United States: Martino Fine Books. (p. 20)

Michel Baudin‘s comments: Today, we would say “manufacturing” rather than “industry,” and “operator” rather than “workmen.” This is the earliest text I have seen that recommends engaging shop floor operators in improvement activities and training them to understand the broader picture. 

Taylor wanted to control operators so that they couldn’t collude to curtail output. The Gilbreths wanted to make their work easier. Follett wants to tap into their knowledge and combine it with the experts’ in order to achieve better outcomes. And she also believes in their ability to learn.

In these few words, she showed more respect for the humanity of the operators than I recall seeing from her immediate precursors and contemporaries. 

 

#maryparkerfollett, #respectforhumanity, #traceyrichardson

 

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Press clippings • 5 • Tags: Respect for Humanity, Respect for People

The-Oracle-Pythia-High-Priestess.jpeg

Jul 30 2021

Sales Forecasts – Part 2. More About Evaluation

The lively response to last week’s post on this topic prompted me to dig deeper. First, I take a shot at clarifying the distinction between point forecasts and probability forecasts. Second, I present the idea behind the accuracy metric for probability forecasts that Stefan de Kok recommends as an alternative to the WSPL. Finally, I summarize a few points raised in discussions on LinkedIn and in this blog.

All of this is about evaluating forecasts. We still need methods to generate them. There are many well-known, published methods for point forecasts but not for probability forecasts, particularly for sales. This is a topic for another post.  

Continue reading…

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Tools • 2 • Tags: Probability Forecast, Sales forecast

Sales Forecast Example

Jul 16 2021

Sales Forecasts – Part 1. Evaluation

When sizing a new factory or production line, or when setting work hours for the next three months, most manufacturers have no choice but to rely on sales forecasts as a basis for decisions.

But how far can you trust sales forecasts? You use a training set of data to fit a particular model and a testing set of actual data observed over a time horizon of interest following the end of the training set period. The training set may, for example, cover 5 years of data about product sales up to June 30, 2021, and the testing set the actual sales in July, 2021. 

The forecasters’ first concern is to establish how well a method works on the testing set so that the decision makers can rely on it for the future. For this, they need metrics that reflect end results and that end-users of forecasts can understand. You cannot assume that they are up to speed or interested in forecasting technology.

Forecasters also need to compare the performance of different algorithms and to monitor the progress of an algorithm as it “learns,” and only they need to understand the metrics they use for this purpose. 

 

Continue reading…

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Tools • 11 • Tags: Kanban, Production planning, Sales forecast

VietnameseSatellitePassesFinalTestInJapan.png

Apr 16 2021

Measuring QC Efficacy: A Proposal

[The featured image is of a Vietnamese satellite undergoing final test in Japan]

As Jay Bitsack pointed out in his comments on LinkedIn about my previous post, the portability of a method from epidemiology to manufacturing quality is not a foregone conclusion. Formally, the logic of validating a vaccine seems applicable to the solution of a quality problem. They look similar when you consider only outcomes in terms of infection rates or the proportion of defectives. 

There are differences between data sets from a clinical trial and tests run before and after a process change in production that may affect the applicability of a method. We examine the conditions for the approach developed by Carlo Graziani for vaccine efficacy to cross over to quality control. Then we work out the math of Graziani’s method and the means to apply it. 

 

Continue reading…

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Laws of nature • 0 • Tags: Bayesian Statistics, Efficacy, Manufacturing, Quality, Quality Assurance, Quality Control

«< 8 9 10 11 12 >»

Follow Blog via Email

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 580 other subscribers

Recent Posts

  • Update on Data Science versus Statistics
  • How One-Piece Flow Improves Quality
  • Using Regression to Improve Quality | Part III — Validating Models
  • Rebuilding Manufacturing in France | Radu Demetrescoux
  • Using Regression to Improve Quality | Part II – Fitting Models

Categories

  • Announcements
  • Answers to reader questions
  • Asenta selection
  • Automation
  • Blog clippings
  • Blog reviews
  • Book reviews
  • Case studies
  • Data science
  • Deming
  • Events
  • History
  • Information Technology
  • Laws of nature
  • Management
  • Metrics
  • News
  • Organization structure
  • Personal communications
  • Policies
  • Polls
  • Press clippings
  • Quality
  • Technology
  • Tools
  • Training
  • Uncategorized
  • Van of Nerds
  • Web scrapings

Social links

  • Twitter
  • Facebook
  • Google+
  • LinkedIn

My tags

5S Automation Autonomation Cellular manufacturing Continuous improvement data science Deming ERP Ford Government Health care industrial engineering Industry 4.0 Information technology IT jidoka Kaizen Kanban Lean Lean assembly Lean Health Care Lean implementation Lean Logistics Lean management Lean manufacturing Logistics Management Manufacturing Manufacturing engineering Metrics Mistake-Proofing Poka-Yoke Quality Six Sigma SMED SPC Standard Work Strategy Supply Chain Management Takt time Toyota Toyota Production System TPS Training VSM

↑

© Michel Baudin's Blog 2025
Powered by WordPress • Themify WordPress Themes
%d