Sep 3 2024
Using Regression to Improve Quality | Part I – What for?
In quality, regression serves to identify substitutes for true characteristics that are hard to observe and to find the root causes of technically challenging process problems. It is a major topic in data science, but oddly, the most extensive coverage I could find in the literature on quality is in Shewhart’s first book, from 1931! Later books, including Shewhart’s second, discuss it briefly or not at all. The ASQC, forerunner of the ASQ, published an 80-page guide on how to use regression analysis in quality control in 1985, but has not updated it since.
Regression analysis has been around for almost 140 years and has grown massively in scope, capabilities, and dataset size. Perhaps, it is time for professionals involved with quality to take another look at it.
Dec 28 2024
Using Regression to Improve Quality | Part III — Validating Models
Whether your goal is to identify substitute characteristics or solve a process problem, regression algorithms can produce coefficients for almost any data. However, it doesn’t mean the resulting models are any good.
In machine learning, you divide your data into a training set on which you calculate coefficients and a testing set to check the model’s predictive ability. Testing concerns externally visible results and is not specific to regression.
Validation, on the other hand, is focused on the training set and involves using various regression-specific tools to detect inconsistencies with assumptions. For these purposes, we review methods provided by regression software.
In this post, we explore the meaning and the logic behind the tools provided for this purpose in linear simple and multiple regression in R, with the understanding that similar functions are available from other software and that similar tools exist for other forms of regression.
It is an attempt to clarify the meaning of these numbers and plots and help readers use them. They will be the judges of how successful it is.
The body of the post is about the application of these tools to an example dataset available from Kaggle, with about 30,000 data points. For the curious, some mathematical background is given in the appendix.
Many of the tools are developments from the last 40 years and, therefore, are not covered in the statistics literature from earlier decades.
Continue reading…
Contents
Share this:
Like this:
By Michel Baudin • Data science • 0 • Tags: Linear Model, Quality, regression, Validation