Michel Baudin's Blog
Ideas from manufacturing operations
  • Home
  • Home
  • About the author
  • Ask a question
  • Consulting
  • Courses
  • Leanix™ games
  • Sponsors
  • Meetup group

Apr 5 2013

Is the Kanban system to ensure availability of materials or to reduce inventory?

Pranay Nikam, from VCT Consulting India, asked the following question:

“I have designed and implemented the Kanban System at various type of industries. The challenge I face now is not that of explaining people how the system is designed or how it works. But rather clearing the misconception/misunderstandings key industry people have about Kanban.

My understanding of a Kanban System is ‘A Consumption based replenishment system’ with Multiple Re-Order Point (multiple Bins) as opposed to the traditional Two Bin System. In simpler words you keep enough stock to cover for the total lead time and add a buffer for demand variation and supply failures. And keep replenishing the stock as and when you consumes. The replenishment can be through fresh production or withdrawal from Warehouses or procurement from supplier.

Prime objective of the Kanban System is material availability to enable High Mix and low volume production; ultimately to support production levelling instead of running huge batches.

However, some Lean Consultants propagate Kanban as a inventory reduction tool and nothing more than a material scheduling software that can be configured in any ERP Systems.

I would be happy be receive your comments on the two different perspectives.”

The Kanban system has many variants, discussed in Chapters 10 to 13 of Lean Logistics. All these variants, however, have the following characteristics in common:

  1. They implicitly assume the demand for an item in the immediate future to match the recent past. It is a naive forecast, but hard to beat on intervals that are negligible with respect to what Charlie Fine calls the clockspeed of the business. And the fluctuations are smoothed by leveling/heijunka.
  2. They use some form of tokens to signal demand. Whether these tokens are cards or electronic messages, they can be detached from bins and parts and processed separately, in ways that are not possible, for example, in the two-bin system.
  3. There is a fixed number of tokens in circulation for each item, which is a key control mechanism for the supply of this item.
  4. The protocols for handling these tokens provide unambiguous directions on what should be done. No human judgement call is required to decide which item to move or produce. There are variations where that is not the case, like the French Kanban, which, for this reason, I don’t consider genuine.

The Kanban system  is not just a multiple-bin system, because bins are not used as pull signals. The Kanbans are pulled from bins when you start withdrawing parts from it, which you couldn’t do if the bin itself were used as a signal. If the signals are cards, you can organize them in post-office slots or on boards, which you also couldn’t do with bins. And, of course, you can do much more with electronic signals, which does not necessarily mean you should.

Your description of Kanban omits the goal of keeping inventory as low as you can without causing shortages, and experimenting with the numbers of Kanbans in circulation to test where the limit is, which makes it a tool to drive improvement.

Kanbans work for items consumed in quantities that have small fluctuations around a mean, which means medium-volume/medium mix rather than low-volume/high mix. You use other methods for different demand patterns, like reorder point for bulk supplies, consignment for standard nuts, bolts and washers, or just-in-sequence for option-specific large items… In low-volume/high-mix production you have many items that you cannot afford to keep around and only order from your supplier when you have an order from your customer; it isn’t the way the Kanban system works.

You can do many things with ERP systems but, historically, they have been more effective in managing purchase orders with suppliers than in directing shop floor operations. If you have an ERP system with accurate, detailed data about your shop floor, you can, in principle apply any algorithm you want to produce a schedule. Most ERP systems, however, do not even have structures in their databases to model the behavior of production equipment at a sufficient level of detail, and are not capable of producing actionable schedules. They print recommendations, and the final decision on the work that is actually done is a judgement call by the supervisor, or even sometimes the operator. Within its range of applicability, the Kanban system avoids this with simple rules, by focusing on what is actually observable and controllable at the local level.

So, I suppose the answer to your question is that the Kanban system’s immediate purpose in daily operations  is to assure the availability of materials while reducing inventory, with the longer-term purpose of driving improvement. Pursuing either of these goals at the expense of the other would be easier but not helpful to the business.

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Answers to reader questions 12 • Tags: ERP, Kanban, Reorder point, Tow-bin system

Apr 4 2013

The Purpose of Standard Work in Manufacturing

The articles by Art Smalley‘s and  Mike Rother about Standards in The Lean Edge  puzzle me, because it seems we all mean different things by “standard.” On a manufacturing shop floor, in particular, I don’t see Standard Work as a basis for comparison, the best way known to perform a task, or a target condition.  Instead, it is a set of rules published for the purpose of ensuring that different people perform the same tasks in the same way. This is consistent with the Wikipedia definition of a technical standard.

A process can only produce a consistent output at a consistent pace on different shifts in the same plant, as well as in different plants, if it is performed on the same materials, with the same equipment, and by the same methods. That is what standard work is supposed to accomplish, and it is, for both human and technical reasons, more difficult than meets the eye.

So here are a few thoughts I would like to share on this subject:

  • Standard Work versus Craft Control
  • Use of A3 instruction sheets
  • Avoiding “Lean Wallpaper”

Standard Work versus Craft Control

When operators on a manufacturing shop floor remain on the same job for years, they come up with their private tricks on how to perform it. They attach “cheater bars” to wrenches, rearrange parts around their stations, and develop the ability to detect anomalies by sight, sound, touch, or smell. By default, as operators perceive this knowledge to be the key to job security, they make sure it remains hidden away in their heads.

British 19th-century craftsman
19th-century craftsman

It leads to a situation that economist William Lazonick called Craft Control, in which management leaves the organization of work on the shop floor to the operators. The focus of Frederick Taylor’s “scientific management” was to replace craft control with managerial control, and it entailed the detailed specification of all operations by specialists. For decades after Taylor’s death in 1915, the management of American manufacturing companies engaged in a tug-of-war with labor to put an end to craft control, and ultimately failed,  resulting in shelves of binders full of specs that nobody pays attention to, except external auditors.

Human resource policies that involved laying off whenever business slows down were an incentive to retain rather than share information. And leaving operators on the same job for years made the specs unnecessary except to train new operators but, when you tried to use them for this purpose, more often than not you found them to be obsolete.

TPS/Lean pursues managerial control too, but in ways that differ as follows:

  1. Operators are hired for a career in the company and retained through downturns.
  2. They are frequently rotated between jobs and become multi-skilled, which requires them to share what they know.
  3. They participate in continuous improvement, leading to the integration of their private tricks into the shared specs.
  4. Instead of Victorian novels in binders, the specs are concise memory joggers on A3 sheets of paper posted above work stations. 

See last July’s post on What are standards for? for examples and details. These differences do not make it easy to implement, but they remove the key obstacles that account for the earlier failure.

Use of A3 instruction sheets

A3 instruction sheets above work stations help supervisors notice discrepancies between the standard and the practice of the operators. When there is such a discrepancy, however, the supervisors must investigate it rather than always “retrain” the operator to conform to the standard. The operator may in fact have improved the process; this improvement needs to be documented and  the standard updated so as to propagate this improvement to all other operators doing the same process. When walking through a shop floor that has such posted instructions, one should check the signature block to see when it was last updated. If it was five years ago, the sheet is useless. In fact, It should have been updated in the last six months.

In The Birth of Lean (p. 9), are Taiichi Ohno’s own words on the subject:

 “…the standard work display panels […] let the foremen and supervisors see easily if the operators were adhering to the standard work procedures. […] I told everyone that they weren’t earning their pay if they left the standard work unchanged for a whole month.”

Changing specs once a month for every operation seems a hectic pace, leaving operators barely enough time to master the new method before changing it. Perhaps it was justified in Toyota’s single machine shop, that Ohno was running  in the early 1950s. Managing revisions in a network with dozens of factories worldwide that is Toyota today is a different kind of challenge.

Avoiding Lean Wallpaper

Posting too many instructions, maps, charts, forms, before-and-after pictures, etc., is counterproductive. The result is visual clutter rather than visual management. Producing, posting, and maintaining displays is work, and it should be done selectively, when it has a clear purpose and is worth the effort.

In daily life, we use complex products like computers, cars, or kitchen appliances without posted instruction sheets. We can, because these products have been engineered for usability and mistake-proofed. Usability engineering is the art of designing human-machine interfaces so that users find the right actions to take without prompting or instruction; it is widely applied to household appliances, based on techniques described in Don Norman’s The Design of Everyday Things. In Taming HAL, Asaf Degani expands on these techniques for application to airliner cockpits and ship control rooms, and Chapters 1 and 2 of  Working with Machines summarizes them as they apply to production equipment. Usability engineering is about making mistakes unlikely, but not impossible; this is why, whenever possible, it is supplemented by mistake-proofing. The following pictures illustrate one of the usability engineering principles. In Pixar’s “Lifted,” the young alien taking a test cannot tell which switch to press; Don Norman shows an example of a control room in a nuclear power plant where technicians have replaced identical joysticks with different beer keg handles to make them easier to tell apart.

The alien in Pixar’s “Lifted” needs a manual
Don Norman’s example of beer handles to tell controls apart in nuclear power plant

Toyota in recent years has been pursuing a reduction in the amount of information posted on the shop floor. They simplified the tasks to eliminate the need for posted instructions, which also made it easier to train new people. This has been going on in several plants worldwide for several years, resulting in continuing improvements in quality and productivity. Instruction materials are kept off line and brought out as needed, like a car’s owner manual.

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Policies 7 • Tags: Lean, Lean manufacturing, Standard Work, Toyota, Toyota Production System, TPS

Apr 3 2013

A #Lean Look at the #Baseball Jersey Manufacturing Process

See on Scoop.it – lean manufacturing

Chad Walters

Michel Baudin‘s insight:

Insightful comments. Keep it up.

See on leanblitz.net

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Blog clippings 1 • Tags: Garment industry, Lean, Video analysis

Apr 2 2013

Some Remarks on the History of Kanban | Alexei Zheglov

See on Scoop.it – lean manufacturing

“The Kanban method as we know it today has many other influencers and origins besides Ohno and TPS. Two such influencers were of course W. Edwards Deming and Eliyahu Goldratt. Demings 14 Points and the System of Profound Knowledge guide Kanban change agents worldwide. […] Thus the “watershed” of the Kanban method circa 2013 has many “tributaries” of which the TPS is only one. Those other sources should be studied by those how want to apply the Kanban method effectively as change agents.”

Michel Baudin‘s insight:

It takes nerve to write this sort of things.

Among the tools of TPS, the Kanban system is the only one that has been covered in the media from the beginning to the point of overexposure, because it combines a clever idea with objects you can see and touch.

What some software people did is borrow the names of both Lean and Kanban and apply them to theories with at best a tenuous relationship to the original.

That it worked for them as a marketing technique is to their credit, but I would not advise anyone wanting to learn about the Kanban system to read Deming, Goldratt, or Drucker, who is also referenced.

And TPS is not a “tributary” of the Kanban method. It is the Kanban method that is a tool of TPS, and useful only in the proper context, in conjunction with other tools in a well-thought out implementation.

See on learningagileandlean.wordpress.com

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Blog clippings 7 • Tags: Kanban, Lean, Software

Apr 1 2013

Lean and clichés

RunnersHere we go again! An article about Lean in machine shops today leads off with “In an increasingly competitive marketplace…,” I just could not read further. Has anyone ever met a market that was not “increasingly competitive”? I don’t believe that one ever existed 100 years ago, today, or will 100 years from now. Given that all markets always are “increasingly competitive,” stating it  just wastes readers’ time, for which there is ever increasing competition…

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Blog reviews 2 • Tags: Competition, Lean

«‹ 99 100 101 102›»

Follow Blog via Email

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 578 other subscribers

Recent Posts

  • Quality and Me (Part I) — Semiconductors
  • Update on Data Science versus Statistics
  • How One-Piece Flow Improves Quality
  • Using Regression to Improve Quality | Part III — Validating Models
  • Rebuilding Manufacturing in France | Radu Demetrescoux

Categories

  • Announcements
  • Answers to reader questions
  • Asenta selection
  • Automation
  • Blog clippings
  • Blog reviews
  • Book reviews
  • Case studies
  • Data science
  • Deming
  • Events
  • History
  • Information Technology
  • Laws of nature
  • Management
  • Metrics
  • News
  • Organization structure
  • Personal communications
  • Policies
  • Polls
  • Press clippings
  • Quality
  • Technology
  • Tools
  • Training
  • Uncategorized
  • Van of Nerds
  • Web scrapings

Social links

  • Twitter
  • Facebook
  • Google+
  • LinkedIn

My tags

5S Automation Autonomation Cellular manufacturing Continuous improvement data science Deming ERP Ford Government Health care industrial engineering Industry 4.0 Information technology IT jidoka Kaizen Kanban Lean Lean assembly Lean Health Care Lean implementation Lean Logistics Lean management Lean manufacturing Logistics Management Manufacturing Manufacturing engineering Metrics Mistake-Proofing Poka-Yoke Quality Six Sigma SMED SPC Standard Work Strategy Supply Chain Management Takt time Toyota Toyota Production System TPS Training VSM

↑

© Michel Baudin's Blog 2025
Powered by WordPress • Themify WordPress Themes
%d