Michel Baudin's Blog
Ideas from manufacturing operations
  • Home
  • Home
  • About the author
  • Ask a question
  • Consulting
  • Courses
  • Leanix™ games
  • Sponsors
  • Meetup group

Jan 16 2014

What a Coffee Cup Taught Me About Poka Yoke and Human Errors | Peter Abilla

See on Scoop.it – lean manufacturing

“Human Errors, Poka Yoke are concepts brought to life from my experience with coffee cup. One can learn a lot about Poka Yoke and Human Errors. This is a story about what a coffee cup taught me about how poor design in our products and systems invite human error.

Many years ago, I had to travel to Dublin every few months for work. […] One very early morning while waiting for the taxi to pick me up at my hotel to take us to the airport, my colleague with whom I was traveling with at the time had ordered coffee while I ordered a Coke since I’m not a coffee drinker. They brought him his coffee in this cup.”

Michel Baudin‘s comments:

With its unsightly bumps and nooks, the “fancy cup” you show is not even pretty, which makes you wonder what the designer had in mind. The issues you bring up, however, are more about usability engineering in Don Norman’s sense, than Poka-Yoke.

A properly designed handle is self-explanatory in that any user who has never seen a cup will immediately understand what it is for. But it doesn’t make the cup mistake-proof: there is nothing physically preventing you from pouring coffee onto it while it is upside down.

Usability engineering is about controls that look and feel distinctive to the touch — as opposed to rows of identical buttons — that give you feedback when you have activated them, that have shapes that naturally lead you to use them properly, that respect cultural constraints in the meaning of shapes and colors, etc.

Applying these principles in designing human interfaces reduces training costs and the risk of errors. It is valuable, but it does not prevent errors.

Double-walled cup

Incidentally, why do so many cultures, including Japan and China, use cups with no handles? An alternative to handles to avoid burning your fingers is the double-walled cup, and I have seen some from China. Otherwise, I have resorted to the Arab way of holding a handleless tea cup: between my thumb on the bottom and my index finger on the rim.

See on www.shmula.com

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Blog clippings 3 • Tags: Mistake-Proofing, Poka-Yoke, Usability Engineering

Jan 15 2014

2013 IW Best Plants Winners: Peak Performers | Operations content from IndustryWeek

See on Scoop.it – lean manufacturing
The 2013 IndustryWeek Best Plants winners meet the challenge of operational excellence — and keep pushing for more. Manufacturing excellence is alive and well in North America. Remarkable manufacturing facilities with remarkable team members and leaders are delivering remarkable results.

 

Michel Baudin‘s comments:

It’s an annual ritual, like the Academy Awards.

See on www.industryweek.com

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Press clippings 0 • Tags: Best plants, Industry week

Jan 15 2014

The “Making Things in Japan Tour” — April 20-26, 2014

You may have noticed a new widget on our sidebar, which links to a site about this tour and registration through Eventbrite. Brad Schmidt and I are organizing this together, and I am thrilled to be working with him again.

Why go to Japan to visit plants in 2014? Until the 1970s, Japanese manufacturing got no respect. When I headed there as an engineering graduate in 1977, a classmate of mine called this move “career suicide.” Whatever competitive success Japanese companies had achieved by then was chalked up to long hours and low wages, much the way China is perceived today.

Then came the 1980s and the discovery that there was more to it — that should be looked into and studied — coupled with fear that “Japan, Inc.” was going to take over the world. The two-decade recession that hit Japan in the early 1990s put a quick end to the paranoia and, more slowly, dampened the enthusiasm for so-called “Japanese methods” in manufacturing and management.

The renewed neglect of Japan today, however, is no more rational than was the exuberance of the 1980s. Japan today has a highly trained but aging and expensive work force, and is facing the same challenges as other advanced economies. And it still has the most advanced, most productive, manufacturing plants in the world, with the best quality. It is still the go-to place for manufacturing excellence, where the art of making things (Monozukuri, 物作り) is valued and honored both in companies and in society at large. 

For those who don’t know him, Brad Schmidt is a South African raised in Japan, a graduate of Japanese schools,  and perfectly bilingual. With 128 tours in 15 years under his belt and counting, he is a pro. Few people have seen the inside of more Japanese factories than him, and he has the logistics of tours worked out, from airport pickups to  interpreters, transportation and lodging. That leaves me with the easy part: promoting this tour in tour in the US and then going on it to help answer participants’ questions  and facilitate site reviews.

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Announcements 0 • Tags: Japan tour, Lean

Jan 14 2014

And around and around it goes | Bill Waddell

See on Scoop.it – lean manufacturing
“Not long ago I conducted an exercise with a client in which two teams of three people assembled a Lego product.  One team of three folks from accounting was given the 500 or so pieces the way Lego presents them – kitted in bags of parts that align with the largely graphic instructions.  Basically, all of the parts needed to make sub-assembly #3, for instance, are in a bag marked ‘3’, and the instructions for 3 show pictures of exactly how all of the parts are to be assembled…”

Michel Baudin‘s comments:

You can do many things with Legos, like our own Leanix™games, and this article shows an example where a team of accountants who were given parts in kits and assembly instructions from Lego performed 40% faster than a team of engineers who were given the parts in single-item bags and only pictures of the finished assemblies.

In drawing far-reaching conclusions from this example, however, Bill is comparing apples and oranges. It was faster to assemble from kits because somebody at Lego had kitted the parts, and the kits were complete and accurate. A fair comparison would require including the time needed for this. Kitting may still win, but not by a 40% landslide.

In a real manufacturing situation, you buy components and materials from specialized suppliers and, if you want kits, you have to put them together before assembly. Whether it is justified or not depends on what you are producing and on the parts you use.

Let us assume you are making custom-configured products on a mixed-flow line, but there is one screw that is used in all configurations. You are better off presenting this screw on the line side in bins than distributing it across kits.

On the other hand, it often makes sense to kit configuration-specific parts off line. It requires less labor overall but, most importantly, the work of kitting is done in parallel with assembly rather than in the final assembly sequence, which can cut in half the start-to-finish assembly time on the line.

Even then, however, you have issues with kitting errors by operators who don’t know the product, kits rendered unusable by a single defective part, and part stealing from kits, which is often done as an immediate remedy to the above.

See on www.idatix.com

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Blog clippings 0 • Tags: industrial engineering, Kitting, Lean assembly, part presentation

Jan 7 2014

Using videos to improve operations | Part 7 – Detailed review of process segments

Asenta 2011-03 Roberto Cortés
Roberto Cortés
Asenta Juan Ortega head shot
Juan Ortega

This post was co-written with Asenta’s Roberto Cortés and Juan Ortega, based on a joint project in Spain in October, 2013. A detailed analysis of the video recordings on two operations was key to generating improvement ideas that the plant has implemented since. The company had shot some videos of operations before, but not used them this way before, and it was a learn-by-doing experience for the participants. 

The demand for the company’s products is growing, and it is struggling to keep up. Its core technology is a fabrication process, and engineering has focused its attention on it to increase capacity. After fabrication, however, the product needs several assembly operations. From direct observation, it was clear that the operators were working at a pace that could not be sustained for a whole shift. The manager confirmed that the pace slackened and the quality dropped towards the end of the shift.

The challenge was therefore to change the assembly process so that the operator could complete the tasks within the takt time of about 60 seconds, at a steady, sustainable pace, without running ragged or getting exhausted. While on site, we focused on two operations, shot videos as recommended in earlier posts — from an elevated position and focusing on the operator’s hands — and coached the plant team on reviewing the videos, with the goal of enabling them to do it on their own for the other operations.

Preparation

The detailed review breaks the operation down into its smallest identifiable steps  to discover improvement opportunities for each. If you are going to do this on a regular basis, you should probably invest in software to collect timestamps from videos, categorize the steps, and record improvement ideas, like Timer Pro or Dartfish.  Timer Pro was developed specifically for Manufacturing; Dartfish, for sports, but it has also been used in Manufacturing.

For the first time, it is best to do it on short operations, and you can make do with an Excel spreadsheet on which you manually record the timestamps. It needs the following columns:

  • Step number
  • End time
  • Step duration, calculated from the timestamps.
  • Cumulative time, aggregated from step durations.
  • Operation Description
  • Operation Category
  • Improvement Ideas

Sufficient time has to be allowed for the detailed review. It is customary to allow between 3 and 5 times the length of the recording and even more if the recording is very short. It is recommended to have a sample of the product and components at hand where the review is being held.

Asenta----Product-sample-in-conference-room
Product sample in conference room

Review

The video is analysed and the spreadsheet completed step by step. For short steps, you can play the video in slow motion  to give time to observe details. Because you are going to be adding times, you need record the timestamps at a higher precision than you are really interested in. For example, to analyze time in second, you need to record the timestamps to one tenth of a second. The video and the form are shown on the screen at the same time.

Asenta----Video-and-analysis-form-on-same-screen
Video and analysis form on the same screen

While conducting the analysis, do the following:

  • Describe each step with an action verb and a single object. If you find you can’t, break it down further until you can.
  • Do not criticize ideas. Write them down for later evaluation.
  • Aim to eliminate unnecessary steps (muda), reduce the variability in how the steps are carried out (mura) and their inconvenience (muri).
  • Assign a category to each step so that you can aggregate times by category.

You can generate your own categories as you go along and standardize them as you reach conclusions. There must not be too many (5 better than 10) and they are usually of the following type:

  • Pick up/put down
  • Walk
  • Assemble
  • Inspect or test
  • Wait
  • Adjust
  • Rework
  • ….

If there are large differences in how different operators perform the operation, several videos can be screened at the same time, with the same task carried out by different operators. It is essential to carry out this detailed review with the operators in the videos. They know things that nobody else knows, and have ideas that you want to use.

Asenta -- Operators participating in analysis
Operators participating in the analysis of their own work

Conclusions

When you analyze operations for the first time, it is common to discover that about 40% of the time is spent on activities other than assembly or test. This is due to a combination of wrong sequencing, redundant steps, multiple handling, inadequate fixtures, inconveniently located tools or parts, etc.

Of course, not all of these can be eliminated easily. Some can be, by redesigning or retrofitting the work station; others can be taken out of the assembly flow and performed in parallel so that, for example, the operator does not have to prepare a part while the product waits. The net productivity increase that can usually be accomplished is on the order of 30%, without overburdening the operator. In our client’s case, this means making the assembly jobs sustainable while absorbing a higher demand.

Once the summary of times by category has shown the “gold in the mine” — that is, the improvement potential, the team fleshes out the ideas generated during the review of the video, tries them out as much as possible immediately, and turns them into proposals. The following pictures shows the flip chart with sketches of the proposals generated in our sessions, and a snapshot of try-storming.

Sketches of improvement ideas
Trystorming improvements

The team then turns the  improvement proposals into a detailed action plan for the short, medium-, and long term.

Once the improvements are implemented, the team shoots another video of the operation, for the following purposes:

  • Validating the improvements.
  • Standardizing the sequence of operations
  • Training other operators

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Technology 2 • Tags: Assembly, Excel, industrial engineering, Lean manufacturing, Productivity, Spreadsheet, Video

Jan 6 2014

We passed 200,000 page views!

Yesterday, the cumulative number of page views since the start of this blog crossed the 200,000 mark. I was hoping it would happen by December 31 to make it an even year since the previous milestone at 100,000, but it came a few days late.

A big thank you to the readers. Please keep making comments.

I hope to keep your interest in the future.

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Announcements 4 • Tags: Michel Baudin, michelbaudin.com

«‹ 75 76 77 78›»

Follow Blog via Email

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 578 other subscribers

Recent Posts

  • My Toyota Forklift
  • Label your charts!
  • Quality and Me (Part I) — Semiconductors
  • Update on Data Science versus Statistics
  • How One-Piece Flow Improves Quality

Categories

  • Announcements
  • Answers to reader questions
  • Asenta selection
  • Automation
  • Blog clippings
  • Blog reviews
  • Book reviews
  • Case studies
  • Data science
  • Deming
  • Events
  • History
  • Information Technology
  • Laws of nature
  • Management
  • Metrics
  • News
  • Organization structure
  • Personal communications
  • Policies
  • Polls
  • Press clippings
  • Quality
  • Technology
  • Tools
  • Training
  • Uncategorized
  • Van of Nerds
  • Web scrapings

Social links

  • Twitter
  • Facebook
  • Google+
  • LinkedIn

My tags

5S Automation Autonomation Cellular manufacturing Continuous improvement data science Deming ERP Ford Government Health care industrial engineering Industry 4.0 Information technology IT jidoka Kaizen Kanban Lean Lean assembly Lean Health Care Lean implementation Lean Logistics Lean management Lean manufacturing Logistics Management Manufacturing Manufacturing engineering Metrics Mistake-Proofing Poka-Yoke Quality Six Sigma SMED SPC Standard Work Strategy Supply Chain Management Takt time Toyota Toyota Production System TPS Training VSM

↑

© Michel Baudin's Blog 2025
Powered by WordPress • Themify WordPress Themes
%d