Jul 10 2012
Is Lean a Change Methodology or an End State? | Management Meditations
See on Scoop.it – lean manufacturing
Another thoughtful contribution from Larry Miller, with my comments.
See on www.lmmiller.com
Jul 10 2012
See on Scoop.it – lean manufacturing
Another thoughtful contribution from Larry Miller, with my comments.
See on www.lmmiller.com
By Michel Baudin • Blog clippings 0 • Tags: Lean, Lean implementation, Management
Jul 9 2012
Question 1: How to boil water?Answer 1: Take a pot, fill it up with water, place it on the stove, turn on the burner, and wait.Question 2: How to boil water, when you already have a pot of cold water on the stove?Answer 2: Empty the pot, put it away, and you are back to Question 1.
Instead of trying to develop and enforce a standard, one-size-fits-all methodology for all of a company’s plants — whose processes may range from metal foundry to final assembly — the corporate Lean group should instead focus on providing resources to help the plant teams develop their skills and learn from each other, but that is a different discussion.
When a production supervisor notices that an operator is not following the standard, it may mean that the operator needs to be coached, but it may also mean that the operator has found a better method that should be made the standard. But how do you make this kind of local initiative possible without jeopardizing the consistency of your process? The allowed scope for changes must be clear, and there must be a sign-off procedure in place to make them take effect.
I remember an auto parts plant in Mexico that had dedicated lines for each customer. Some of the customers demanded to approve any change to their production lines, even if it involved only moving two machines closer, but other customers left the auto parts maker free to rearrange their lines as they saw fit as long as the did not change what the machines did to the parts. Needless to say, these customers’ lines saw more improvement activity than the others.
In this case, the production teams could move the torque wrench closer to its point of use but they could not replace it with an ordinary ratchet and a homemade cheater bar. The boundary between what can be changed autonomously and what cannot is less clear in other contexts. In milling a part, for example, changing the sequence of cuts to reduce the tool’s air cutting time can be viewed a not changing the process but, if we are talking about deep cuts in an aerospace forging, stresses and warpage can be affected by cut sequencing.
If a production supervisor has the authority to make layout or work station design changes in his or her area of responsibility, it still must be done with the operators, and there are several support groups that must be consulted or informed. Safety has to bless it; Maintenance, to make sure that technicians still have the required access to equipment; Materials, to know where to deliver parts if that has changed. Even in the most flexible organizations, there has to be a minimum of formality in the implementation of changes. And it is more complex if the same product is made in more than one plant. In the best cases, when little or no investment is required, the changes are implemented first, by teams that include representations from all the stakeholders, and ratified later. We can move equipment on the basis of chalk marks on the floor, but, soon afterwards, the Facilities department must have up-to-date layouts.
The more authority is given to the local process owners, the easier it is to implement improvements, but also the more responsibility upper managers assume for decisions they didn’t make. The appropriate level of delegation varies as Lean implementation progresses. It starts with a few, closely monitored pilot projects; as the organization matures and develops more skills, the number of improvement projects explodes, and the local managers develop the capability to conduct them autonomously. At any time, for the upper managers, it is a question of which decisions pass the “sleep-at-night” test: what changes can they empower subordinates to make on their own and still sleep at night?
If there is a proven method today to document manufacturing processes in such a way that they are actually executed as specified, it is Training Within Industry (TWI). The story of TWI is beginning to be well-known. After being effective in World War II in the US, it was abandoned along with many wartime innovations in Manufacturing, but lived on at Toyota for the following 50 years before Toyota alumni like John Shook revived it in the US.
There are, however, two limitations to TWI, as originally developed:
The developers of TWI may simply have viewed revision management as a secondary, low-level clerical issue, and it may have been in their day. The pace of engineering changes and new product introduction, however, has picked up since then. In addition, in a Lean environment, changes in takt time every few months require you to regenerate Yamazumi and Work Combination charts, while Kaizen activity, in full swing, results in improvements made to thousands of operations at least every six months for each.
In many manufacturing organizations, the management of product and process documentation is slow, cumbersome, and error-prone, particularly when done manually. Today, Product Documentation Management (PDM) is a segment of the software industry addressing these issues. It is technically possible to keep all the standards, with their revision history, in a database and retrieve them as needed. The growth of PDM has not been driven by demands from the shop floor but by external mandates like the ISO-900x standards, but, whatever the reasons may be, these capabilities are today available to any manufacturing organization that chooses to use them.
Using software makes the flow of change requests more visible, eliminates the handling delays and losses associated with paper documents, allows multiple reviewers to work concurrently, but it does not solve the problem of the large number of changes that need to be reviewed, decided upon, and implemented.
This is a matter of management policies, to cover the following:
In principle, revision management can be applied to any document. In practice, it helps if the documents have a common structure. If they cover the same topics, and the data about each topic is always in the same place, then each reviewer can immediately find the items of interest. This means using templates, but also walking the fine line to avoid turning into DeMarco’s template zombies.
If you ask a committee of future reviewers to design an A3 form for project charters, it will be a collection of questions they would like answered. Accountants, for example, would like to quantify the financial benefits of projects before they even start, and Quality Assurance would like to know what reduction in defective rates to expect… Shop floor teams can struggle for days trying to answer questions for which they have no data yet, or that are put in a language with acronyms and abbreviations like IRR or DPMO that they don’t understand. More often than not, they end up filling out the forms with text that is unresponsive to the questions.
The teams and project leaders should only be asked to answer questions that they realistically can, such as:
The same thinking applies to work instructions. It takes a special talent to design them and fill them out so that they are concise but sufficiently detailed where it matters, and understood by the human beings whose activities they are supposed to direct.
It is also possible to display all instructions on the shop floor in electronic form. The key questions are whether it actually does the job better and whether it is cheaper. In the auto parts industry, instructions are usually posted in hardcopy; in computer assembly, they are displayed on screens. One might think that the computer industry is doing it to use what it sells, but there is a more compelling reason: while the auto parts industry will make the same product for four years or more, 90% of what the computer industry assembles is for products introduced within the past 12 months. While the auto parts industry many not justify the cost of placing monitors over each assembly station, what computer assemblers cannot afford is the cost and error rate of having people constantly post new hardcopy instructions.
In the auto industry, to provide quick and consistent initial training and for new product introduction in its worldwide, multilingual plants, Toyota has created a Global Production Center, which uses video and animation to teach. To this day, however, I do not believe that Toyota uses screens to post work instructions on the shop floor. In the assembly of downhole measurement instruments for oilfield services, Schlumberger in Rosharon, TX, is pioneering the use of iPads to display work instructions.
By Michel Baudin • Management 16 • Tags: Information systems, Information technology, Kaizen, Lean implementation, Quality, Standards, Training Within Industry, TWI
Jul 9 2012
See on Scoop.it – lean manufacturing
Update on the show case of Boeing’s Lean program.
Eric Lindblad, vice president of 737 manufacturing operations, is tackling the challenge of making everything fit…
See on kpbj.com
By Michel Baudin • Press clippings 0 • Tags: Boeing, Lean manufacturing
Jul 6 2012
See on Scoop.it – lean manufacturing
From the article:
“For all VW’s success, it is rare to hear people outside the firm praising the “Volkswagen Way” as they once lauded the “Toyota Production System”. VW has ignored Toyota’s obsession with the production line, says Mr Warburton, and concentrated on saving costs through parts-sharing between models. It has managed to preserve a culture of permanent innovation and a willingness to take risks. If there is a Volkswagen Way, it is to be determined, diligent and attentive to detail, with a glint of ruthlessness.”
See on www.economist.com
By Michel Baudin • Press clippings 5 • Tags: Toyota, Toyota Production System
Jul 5 2012
Franck Vermet‘s group at Schlumberger in Rosharon, TX, assembles and tests measurement instruments that operate deep inside oil wells. They are built for internal use by Schlumberger Oilfield Services, to collect data for customers. They are high-value products, with tight tolerances and the ability to operate in an environment that is not friendly to electronics.
With Mark Warren‘s help, Vermet’s group has been looking to TWI as a way to rely less on knowledge in the heads of experienced operators and more on documented processes for the following purposes:
In World War II, however, TWI was implemented with cardboard pocket cards and handwritten Job Breakdown sheets, but the Schlumberger team was determined to use more modern technology. After investigating the available options, they realized the following:
Implementation is still in its early days, but all indications from users are that it works. It should be noted also that the approach is sound from the point of view of data management. Unlike the proliferation of Excel spreadsheets that is so often seen in factories, with more or less accurate and up-to-date copies of master data floating around, this approach provides the necessary controls, with the current data retrieved from the server as needed.
As could be expected, the Schlumberger team is facing headwinds from two directions:
The Schlumberger team is now training suppliers in these tools with the goal of getting them to inspect outgoing parts in such a way that incoming inspection at Schlumberger can be eliminated.
By Michel Baudin • Technology 4 • Tags: IT, Training Within Industry, TWI
Jul 10 2012
Photos of SSJ 100 Nose and Rear Production – English Russia
See on Scoop.it – lean manufacturing

The Chkalov factory makes nose and rear sections for the Superjet 100, Sukhoi’s entry in the regional jet market, in competition with Embraer and Bombardier. While praised for its design, the Superjet 100 has been late in ramping up production and its future is in jeopardy following a crash during a demonstration in Indonesia on May 9, 2012.
According to the article, the plant has a Lean program in place. Based on the photographs, the manufacturing concept is fixed-station assembly with kitting.
See on englishrussia.com
Share this:
Like this:
By Michel Baudin • Press clippings 0 • Tags: Aeronautics, Lean manufacturing, Russia