Michel Baudin's Blog
Ideas from manufacturing operations
  • Home
  • Home
  • About the author
  • Ask a question
  • Consulting
  • Courses
  • Leanix™ games
  • Sponsors
  • Meetup group

Mar 13 2013

Signs and sustainability | Manufacturing Digital, 2/2013

See on Scoop.it – lean manufacturing

Effective visual communications help reduce energy consumption, increase productivity and further the sustainable manufacturing goals of companies around the world, Jack Rubinger explains how…

 

 

 

Michel Baudin‘s insight:

No, it’s not a novel by Jane Austen but an article in a British ezine on Manufacturing.

The article’s author works for a signage company but, this being said, his points on the value of clear, accurate, and regularly updated signage are well taken.

See on www.manufacturingdigital.com

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Press clippings 0 • Tags: 5S, Signage

Mar 12 2013

The baton-touch approach

The following question came this morning from Diogo Cardoso:

What is baton-touch in terms of product oriented manufacturing systems? I have made a deep research about this on Science Direct and other resources but I can find nothing more than an inconclusive paragraph.

Your researched the wrong sources. You could have found your answer in Working with Machines, pp. 140-142. Baton-touch is one of three approaches used to design operator jobs in cells, the other two being the caravan/rabbit-chase and bucket-brigades. The key differences are as follows:

  • In the baton-touch method, each operator performs a fixed subset of the cell’s operations, organized in a fixed sequence. It is commonly used in cells requiring three or more operators making a narrow range of products with similar work content.

    The baton-touch
    The baton-touch
  • In the caravan or rabbit-chase method, the operators follow each other through the entire sequence of operations in the cell. It requires each operator to be skilled in all the operations of the cell, and works well with up to two operators but breaks down with three or more operators, as they queue behind the slowest member of the team.

    The caravan/rabbit chase
    The caravan/rabbit chase
  • In the bucket-brigade method, the operators are in sequence, but the scope of each operator’s tasks varies. When the last operator finishes a unit, he or she takes over the next unit from the preceding operator, who in turn takes over from his or her predecessor, and so on, until the first operator, who starts the next unit. Bucket-brigades are used with a broad mix of custom or configurable products, and work when the faster operators are always downstream from the slower ones. For details, see John Bartholdi’s article on bucket brigades.

    Bucket brigades
    Bucket brigades

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Answers to reader questions 0 • Tags: Cellular manufacturing, industrial engineering, Lean manufacturing, Manufacturing engineering, Operator job design

Mar 12 2013

A "Kaizen" Improvement at a Wine Bar – Is it "Lazy" or Smart? | Mark Graban

See on Scoop.it – lean manufacturing

“Progress isn’t made by early risers. It’s made by lazy men trying to find easier ways to do something.” – Robert Heinlein, American science fiction writer (July 7, 1907

With “kaizen,” the Japanese word meaning “change for the better” (and an improvement methodology), it often seems like a fine line between “lazy” and “efficient.”

The word “lazy,” has negative connotations, while “efficient” is positive. But one of the primary directions in the kaizen approach is to make improvements that make your own work easier.

In healthcare, making ones work easier might translate into rearranging supplies to reduce the amount of walking required. This frees up more time for patient care, which leads to better quality outcomes and shorter hospital stays – meaning a cost savings. So is “laziness” really that bad if applied in a good way?…

See on www.linkedin.com

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Blog clippings 0 • Tags: Kaizen

Mar 11 2013

We passed 100,000 page views!

Champagne poppingToday, the cumulative number of page views since the start of this blog crossed the 100,000 mark.

A big thank you to the readers.

I hope to keep your interest in the future.

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Announcements 1 • Tags: writing

Mar 10 2013

Poka-Yoke at Toyota: the Current State

Mikiharu Aoki's "All About Poka-Yoke in Toyota Factories" (2012)
Mikiharu Aoki’s “All About Poka-Yoke in Toyota Factories” (2012)

Mikiharu Aoki kindly sent me his 2012 book on mistake-proofing (Poka-Yoke) in Toyota factories. I had asked him for it out of curiosity about new developments in this field.

The classics on Poka-Yoke are Shigeo Shingo’s Zero Quality Control (1986) and Productivity Press’s big red book (1987), both of which are useful but leave you hungry for more examples that do not date back to the 1960s and 70s.

In Make No Mistake (2001) Martin Hinckley reused many of the same examples, but added a few using more electronics, discussed the relationship between mistake-proofing and statistical methods, and included a directory of  suppliers for tools and devices. I spot-checked the websites of a few of them and, 12 years after publication of the book, found they were all still around.

While Taiichi Ohno and Shigeo Shingo were men of my grandparents’ generation, Mikiharu Aoki is my contemporary. He is not a founding father of the Toyota Production System, but he has worked in its modern incarnation for 26 years before becoming a consultant. He has written several books — only available in Japanese — and all but one with  “Toyota” in the title.

Part I  is a discussion of the steps needed to implement Poka-Yoke; Part II, 72 actual examples explained through conceptual diagrams and cartoons.

Part I, about 1/3 of the book, first discusses 5S, standard work, process capability, and one-piece flow as prerequisites to mistake-proofing. It then distinguishes the categories of mistake-proofing devices, such as the ones that physically prevent mistakes versus those that prevent defectives from escaping to the next process. It describes the use of Andons to trigger responses to problems detected by mistake-proofing, and expresses a preference for devices that involve direct, mechanical contact with work pieces over sensors and electronics, because their operation is visually obvious.

On the other hand, I did not see recommendations on how you organize the implementation of mistake-proofing, monitor progress, and make sure that the devices do not deteriorate or fall out of use over time. This is not covered either in any of the other books I have seen on the subject.

The examples in Part II are more similar to those in the older books than I expected. The tangs used to prevent mounting the button in the wrong position on a music player control panel are a classic, and the same method is used in my HP inkjet printer to prevent mounting ink cartridges in the dock for a different color.

Mistake-proofing assembly of music player buttons
Mistake-proofing assembly of music player buttons

In the following case is also consistent with the older Poka-Yokes: the outer dimensions of products are used to tell them apart and make different sets of parts available for assembly.

Bin cover Poka-Yoke
Bin cover Poka-Yoke

Clearly, the way it works, and whether it works, is obvious. By a method that relies on differences in the outer dimensions of a product is only applicable where such differences exist. With car engines, they do; with computers, they don’t, and many different configurations of the same product are mounted in the same chassis. In such a context, you have to resort to bar codes, QR codes, or RFID tags and the computer systems that go with them.

I expected to see more use of this kind of technology in current Poka-Yokes, but I understand that Aoki’s book is about car manufacturing and that you want, as much as possible, the devices to be invented on the shop floor by production people.

Among Aoki’s books, the one without Toyota in the title  is called “All about car factories” (自動車工場のすべて, November, 2012), and its purpose is to explain in an integrated manner both the production process and production control sides of car making. Aoki also included it in his package to me, but I have not had a chance to look at it yet. I will keep you posted.

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Book reviews 1 • Tags: Mistake-Proofing, Poka-Yoke, Pokayoke, Quality, Toyota, Toyota Production System, TPS

Mar 6 2013

Wanna Sabotage Your Lean Implementation Effort? Try This | Lonnie Wilson | IndustryWeek

See on Scoop.it – lean manufacturing

Most facilities that fail in a lean implementation have failed to create stable process flow. And by stable I mean statistically stable — a process that is predictable. (Wanna Sabotage Your #Lean Implementation Effort?

Michel Baudin‘s insight:

The way I read Lonnie’s article, he is saying that neglect of the engineering dimension of Lean manufacturing is the primary cause of implementation failure. I agree. It is a long article, but worth reading.

See on www.industryweek.com

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to email a link to a friend (Opens in new window) Email

Like this:

Like Loading...

By Michel Baudin • Press clippings 0 • Tags: industrial engineering, Lean, Lean implementation, Lean manufacturing, Manufacturing engineering, Taiichi Ohno, Toyota, Toyota Production System, TPS

«‹ 102 103 104 105›»

Follow Blog via Email

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 578 other subscribers

Recent Posts

  • My Toyota Forklift
  • Label your charts!
  • Quality and Me (Part I) — Semiconductors
  • Update on Data Science versus Statistics
  • How One-Piece Flow Improves Quality

Categories

  • Announcements
  • Answers to reader questions
  • Asenta selection
  • Automation
  • Blog clippings
  • Blog reviews
  • Book reviews
  • Case studies
  • Data science
  • Deming
  • Events
  • History
  • Information Technology
  • Laws of nature
  • Management
  • Metrics
  • News
  • Organization structure
  • Personal communications
  • Policies
  • Polls
  • Press clippings
  • Quality
  • Technology
  • Tools
  • Training
  • Uncategorized
  • Van of Nerds
  • Web scrapings

Social links

  • Twitter
  • Facebook
  • Google+
  • LinkedIn

My tags

5S Automation Autonomation Cellular manufacturing Continuous improvement data science Deming ERP Ford Government Health care industrial engineering Industry 4.0 Information technology IT jidoka Kaizen Kanban Lean Lean assembly Lean Health Care Lean implementation Lean Logistics Lean management Lean manufacturing Logistics Management Manufacturing Manufacturing engineering Metrics Mistake-Proofing Poka-Yoke Quality Six Sigma SMED SPC Standard Work Strategy Supply Chain Management Takt time Toyota Toyota Production System TPS Training VSM

↑

© Michel Baudin's Blog 2025
Powered by WordPress • Themify WordPress Themes
%d