Mar 1 2013
Stop the Music! | Bill Waddell
See on Scoop.it – lean manufacturing
Harley-Davidson has announced a no music in the factory rule – period – no exceptions – no ifs, ands or buts.
“Hundreds of Harley-Davidson employees learned through a memo last week that their radios and music being piped onto the factory floor would be kaput by Wednesday — part of a continuous effort to improve safety.”
“‘It’s a distraction,’ said Maripat Blankenheim, director of external communications for Harley. ‘It’s really important for people – no matter what they do – to be focused on what they do.’”[…]
Behavior policies for working adults & the lean principle of treating people with respect are polar opposites: http://t.co/jqAk0y8cdQ
Bill Waddell takes exception to a policy recently issued by Harley Davidson to stop piping music onto the factory floor. According to him, such policies are demeaning. I can’t follow him there, for the following reasons:
- In my book, respect for people includes allowing each person to work without being bothered by somebody else’s music. If you love Country, working all day to Wagner operas would be torture, and vice versa. If you recall Mars Attacks, humankind is saved by the discovery that yodeling makes Martians’ heads explode.
- Sound, on a manufacturing shop floor is used for communications. In some factories, specific tunes are used to mark the start and end of shifts and breaks, and to signal alarms coming from different areas. Piping music for entertainment through the public address system interferes with these messages.
- If you allow distractions at work, where does it stop? I once visited a car assembly plant in the US, where I saw an operator watch Oprah on TV while screwing on a dome light, and immediately resolved never to buy a car made in that plant. Does music diminish performance? Software engineering guru Tom DeMarco described an experiment where multiple computer programmers were given the same assignment in two rooms, one with music and the other one without. The assignment was to write a program to execute a given series of calculations, which ended up always coming out to zero. Half the programmers in the quiet room noticed it and wrote a program that just printed “0.” None of the programmers in the music room did, and all of them implemented the given series of instructions to calculate 0.
- Music plays different roles in different circumstances. When you are driving 100 miles alone on Highway 35 from Minneapolis to Albert Lea, the radio can save your life by keeping you awake. If you need music to stay awake on a production shop floor, it means that your job has been badly designed.
See on www.idatix.com
Apr 4 2013
The Purpose of Standard Work in Manufacturing
The articles by Art Smalley‘s and Mike Rother about Standards in The Lean Edge puzzle me, because it seems we all mean different things by “standard.” On a manufacturing shop floor, in particular, I don’t see Standard Work as a basis for comparison, the best way known to perform a task, or a target condition. Instead, it is a set of rules published for the purpose of ensuring that different people perform the same tasks in the same way. This is consistent with the Wikipedia definition of a technical standard.
A process can only produce a consistent output at a consistent pace on different shifts in the same plant, as well as in different plants, if it is performed on the same materials, with the same equipment, and by the same methods. That is what standard work is supposed to accomplish, and it is, for both human and technical reasons, more difficult than meets the eye.
So here are a few thoughts I would like to share on this subject:
Standard Work versus Craft Control
When operators on a manufacturing shop floor remain on the same job for years, they come up with their private tricks on how to perform it. They attach “cheater bars” to wrenches, rearrange parts around their stations, and develop the ability to detect anomalies by sight, sound, touch, or smell. By default, as operators perceive this knowledge to be the key to job security, they make sure it remains hidden away in their heads.
It leads to a situation that economist William Lazonick called Craft Control, in which management leaves the organization of work on the shop floor to the operators. The focus of Frederick Taylor’s “scientific management” was to replace craft control with managerial control, and it entailed the detailed specification of all operations by specialists. For decades after Taylor’s death in 1915, the management of American manufacturing companies engaged in a tug-of-war with labor to put an end to craft control, and ultimately failed, resulting in shelves of binders full of specs that nobody pays attention to, except external auditors.
Human resource policies that involved laying off whenever business slows down were an incentive to retain rather than share information. And leaving operators on the same job for years made the specs unnecessary except to train new operators but, when you tried to use them for this purpose, more often than not you found them to be obsolete.
TPS/Lean pursues managerial control too, but in ways that differ as follows:
See last July’s post on What are standards for? for examples and details. These differences do not make it easy to implement, but they remove the key obstacles that account for the earlier failure.
Use of A3 instruction sheets
A3 instruction sheets above work stations help supervisors notice discrepancies between the standard and the practice of the operators. When there is such a discrepancy, however, the supervisors must investigate it rather than always “retrain” the operator to conform to the standard. The operator may in fact have improved the process; this improvement needs to be documented and the standard updated so as to propagate this improvement to all other operators doing the same process. When walking through a shop floor that has such posted instructions, one should check the signature block to see when it was last updated. If it was five years ago, the sheet is useless. In fact, It should have been updated in the last six months.
In The Birth of Lean (p. 9), are Taiichi Ohno’s own words on the subject:
Changing specs once a month for every operation seems a hectic pace, leaving operators barely enough time to master the new method before changing it. Perhaps it was justified in Toyota’s single machine shop, that Ohno was running in the early 1950s. Managing revisions in a network with dozens of factories worldwide that is Toyota today is a different kind of challenge.
Avoiding Lean Wallpaper
Posting too many instructions, maps, charts, forms, before-and-after pictures, etc., is counterproductive. The result is visual clutter rather than visual management. Producing, posting, and maintaining displays is work, and it should be done selectively, when it has a clear purpose and is worth the effort.
In daily life, we use complex products like computers, cars, or kitchen appliances without posted instruction sheets. We can, because these products have been engineered for usability and mistake-proofed. Usability engineering is the art of designing human-machine interfaces so that users find the right actions to take without prompting or instruction; it is widely applied to household appliances, based on techniques described in Don Norman’s The Design of Everyday Things. In Taming HAL, Asaf Degani expands on these techniques for application to airliner cockpits and ship control rooms, and Chapters 1 and 2 of Working with Machines summarizes them as they apply to production equipment. Usability engineering is about making mistakes unlikely, but not impossible; this is why, whenever possible, it is supplemented by mistake-proofing. The following pictures illustrate one of the usability engineering principles. In Pixar’s “Lifted,” the young alien taking a test cannot tell which switch to press; Don Norman shows an example of a control room in a nuclear power plant where technicians have replaced identical joysticks with different beer keg handles to make them easier to tell apart.
Toyota in recent years has been pursuing a reduction in the amount of information posted on the shop floor. They simplified the tasks to eliminate the need for posted instructions, which also made it easier to train new people. This has been going on in several plants worldwide for several years, resulting in continuing improvements in quality and productivity. Instruction materials are kept off line and brought out as needed, like a car’s owner manual.
Share this:
Like this:
By Michel Baudin • Policies • 7 • Tags: Lean, Lean manufacturing, Standard Work, Toyota, Toyota Production System, TPS