Apr 4 2013
The Purpose of Standard Work in Manufacturing
The articles by Art Smalley‘s and Mike Rother about Standards in The Lean Edge puzzle me, because it seems we all mean different things by “standard.” On a manufacturing shop floor, in particular, I don’t see Standard Work as a basis for comparison, the best way known to perform a task, or a target condition. Instead, it is a set of rules published for the purpose of ensuring that different people perform the same tasks in the same way. This is consistent with the Wikipedia definition of a technical standard.
A process can only produce a consistent output at a consistent pace on different shifts in the same plant, as well as in different plants, if it is performed on the same materials, with the same equipment, and by the same methods. That is what standard work is supposed to accomplish, and it is, for both human and technical reasons, more difficult than meets the eye.
So here are a few thoughts I would like to share on this subject:
Standard Work versus Craft Control
When operators on a manufacturing shop floor remain on the same job for years, they come up with their private tricks on how to perform it. They attach “cheater bars” to wrenches, rearrange parts around their stations, and develop the ability to detect anomalies by sight, sound, touch, or smell. By default, as operators perceive this knowledge to be the key to job security, they make sure it remains hidden away in their heads.

It leads to a situation that economist William Lazonick called Craft Control, in which management leaves the organization of work on the shop floor to the operators. The focus of Frederick Taylor’s “scientific management” was to replace craft control with managerial control, and it entailed the detailed specification of all operations by specialists. For decades after Taylor’s death in 1915, the management of American manufacturing companies engaged in a tug-of-war with labor to put an end to craft control, and ultimately failed, resulting in shelves of binders full of specs that nobody pays attention to, except external auditors.
Human resource policies that involved laying off whenever business slows down were an incentive to retain rather than share information. And leaving operators on the same job for years made the specs unnecessary except to train new operators but, when you tried to use them for this purpose, more often than not you found them to be obsolete.
TPS/Lean pursues managerial control too, but in ways that differ as follows:
- Operators are hired for a career in the company and retained through downturns.
- They are frequently rotated between jobs and become multi-skilled, which requires them to share what they know.
- They participate in continuous improvement, leading to the integration of their private tricks into the shared specs.
- Instead of Victorian novels in binders, the specs are concise memory joggers on A3 sheets of paper posted above work stations.
See last July’s post on What are standards for? for examples and details. These differences do not make it easy to implement, but they remove the key obstacles that account for the earlier failure.
Use of A3 instruction sheets
A3 instruction sheets above work stations help supervisors notice discrepancies between the standard and the practice of the operators. When there is such a discrepancy, however, the supervisors must investigate it rather than always “retrain” the operator to conform to the standard. The operator may in fact have improved the process; this improvement needs to be documented and the standard updated so as to propagate this improvement to all other operators doing the same process. When walking through a shop floor that has such posted instructions, one should check the signature block to see when it was last updated. If it was five years ago, the sheet is useless. In fact, It should have been updated in the last six months.
In The Birth of Lean (p. 9), are Taiichi Ohno’s own words on the subject:
“…the standard work display panels […] let the foremen and supervisors see easily if the operators were adhering to the standard work procedures. […] I told everyone that they weren’t earning their pay if they left the standard work unchanged for a whole month.”
Changing specs once a month for every operation seems a hectic pace, leaving operators barely enough time to master the new method before changing it. Perhaps it was justified in Toyota’s single machine shop, that Ohno was running in the early 1950s. Managing revisions in a network with dozens of factories worldwide that is Toyota today is a different kind of challenge.
Avoiding Lean Wallpaper
Posting too many instructions, maps, charts, forms, before-and-after pictures, etc., is counterproductive. The result is visual clutter rather than visual management. Producing, posting, and maintaining displays is work, and it should be done selectively, when it has a clear purpose and is worth the effort.
In daily life, we use complex products like computers, cars, or kitchen appliances without posted instruction sheets. We can, because these products have been engineered for usability and mistake-proofed. Usability engineering is the art of designing human-machine interfaces so that users find the right actions to take without prompting or instruction; it is widely applied to household appliances, based on techniques described in Don Norman’s The Design of Everyday Things. In Taming HAL, Asaf Degani expands on these techniques for application to airliner cockpits and ship control rooms, and Chapters 1 and 2 of Working with Machines summarizes them as they apply to production equipment. Usability engineering is about making mistakes unlikely, but not impossible; this is why, whenever possible, it is supplemented by mistake-proofing. The following pictures illustrate one of the usability engineering principles. In Pixar’s “Lifted,” the young alien taking a test cannot tell which switch to press; Don Norman shows an example of a control room in a nuclear power plant where technicians have replaced identical joysticks with different beer keg handles to make them easier to tell apart.
Toyota in recent years has been pursuing a reduction in the amount of information posted on the shop floor. They simplified the tasks to eliminate the need for posted instructions, which also made it easier to train new people. This has been going on in several plants worldwide for several years, resulting in continuing improvements in quality and productivity. Instruction materials are kept off line and brought out as needed, like a car’s owner manual.















Apr 26 2013
Improving operations: How far can you go with common sense?
In the Lean Six Sigma discussion group on LinkedIn, Brian P. Sheets argues that ” the alphabet soup of acronyms describing the multitude of process improvement & management methodologies that have come and gone over the last 50 years […] is just plain, old, common sense.” The list he targets in this statement is Six Sigma, TQM, BPR, BPM, TOC, MBO, Kaizen, and Gemba Kaizen, and overlap the one I discussed earlier in this blog. To support his argument, he invokes not only the great work done in US manufacturing during World War II without these acronyms, but goes back all the way to Egypt’s pyramids.
I see things differently. The old days were not so great and we have learned a few new tricks in the 68 years since the end of World War II, as a result of which we are not only able to make better products, but we also use fewer people to make them, at a higher quality. There definitely is something to some of the ideas that have been packaged under various brands in that time, and it is definitely more than common sense.
What is common sense anyway? The common sense approach to a problem is the solution that would be chosen by an intelligent person without any specialized knowledge. It is what you resort to when faced with a new situation you are unprepared for, like the businessman played by Anthony Hopkins in The Edge, who is stranded in the Alaskan wilderness by a plane crash and has to kill a grizzly.
Once you have been working on something for a few years, however, you are supposed to have acquired specialized knowledge of it, and apply solutions that are beyond common sense. And these solutions are counter-intuitive to anyone without this experience. Lean manufacturing concepts like one-piece flow or heijunka are bewildering to beginners, because they have nothing to go by beyond their common sense.
“Common sense,” Descartes said, “is the most fairly distributed thing in the world, for each one thinks he is so well-endowed with it that even those who are hardest to satisfy in all other matters are not in the habit of desiring more of it than they already have.” After that, he proceeds to explain a method “to seek truth in science” and presents three applications of this method, the best known being analytic geometry. All of this is far beyond common sense.
For all these reasons, I am not too fond of invoking common sense in support of any new concept. What you really need is a rationale, and experimental proof through a small scale implementation.
Share this:
Like this:
By Michel Baudin • Management 2 • Tags: Common sense, Kaizen, LinkedIn, Six Sigma