Perspectives on Standard Work

In the TPS Principles and Practice group on LinkedIn, I started a discussion by asking “What do we mean by ‘Standard Work’?” At that point, I saw it as whatever you do to ensure that same work is done the same way every time, regardless of time of day, production line, or factory; 96 comments later, my perspective has changed somewhat.

Ensuring consistency is, of course, essential but the tool to do it is Job Instruction (JI) rather than Standard Work. An operator’s complete job often involves multiple tasks, each of which has its own instructions. Standard Work builds on these instructions by specifying how these tasks are sequenced and combined to make effective use of people and equipment.

The main contributors were Len CanootSid JoynsonPeter WintonCasey NgDavid Hayden, MBAAchyut VaidyaEmmanuel JALLASEdward M. WhartonStephen DuquetteErik HagerJoachim KnufPaul Perry,  Cid LiSalvador D. Sanchez, Richard KunstAnders PenkerAndrew Williamson, and Steve Milner. The discussion also cited publications by Mike Rother, Art Smalley, John Shook, and Taiichi Ohno. If you want to see the whole discussion, please check it out on LinkedIn. This post is a synthesis , organized by topic and with illustrations added.

Why ask about Standard Work?

The House of Lean is a common metaphor. I use it sparingly, to make the point that the reason most Lean implementations in the US fail is that they are missing one of the two pillars:

House of Lean in Working with Machines

For this purpose, I don’t need to break down the details of what is in the Foundation or what the Goals are. Others provide many more details about the House of Lean, using it as a map of the whole system, with a prominent place given to something called “Standard Work” or “Standardized Work”:

As we can see, there is with variation in Standard Work  is supposed to mean. The Toyota description of Standard Work, for example, includes no reference to 5S or Visual Management, and explicitly excludes Job Instruction. The house on the right is from the Lean Enterprise Institute’s Lean Lexicon, and lists “Standard Work” and “Separating human work and machine work” as distinct entries but it is exactly what you accomplish with work combination charts, that are part of what Toyota calls Standard Work.

When you look it up on the Toyota Georgetown website or the LEI’s Lean Lexicon, it is about setting, for each operation, a takt time, work sequence, and required WIP, as expressed through a process capacity sheet, a work combination chart, and a work chart that is a layout diagram showing flows of parts and movements of operators between stations. (Click to see in full size.)

This is much more specific than what is meant by Standard Work is most discussions I have seen. I use capacity sheets, work combination charts and work station layout charts wherever you have to choreograph people working with machines, but I would not recommend them, for example, in manual assembly.

I have posted before about the work combination chart, as a powerful design tool for operator jobs, that also serves to communicate the sequence of tasks to operators, particularly new ones who are rotated into these positions. I see them as excellent tools, but it would not occur to me to label them “Standard Work,” because I don’t see any connection with the usual meaning of “standard.” I understand that “Standard Work” is an accurate translation of 標準作業 (Hyojun Sagyo), but I still don’t see a connection.

The following video clip, posted by JMA in Japan in 2009, shows what can be accomplished with work combination charts:

 

Standard Work and Process Stability

A process is stable if it can produce consistent output at a consistent pace. If it’s not stable, the first order of business is to stabilize it, but I don’t see standard work as the way to do it. You need to re-engineer the process to the point that its capability is no longer an issue and it is repeatable. Documentation and work instructions are an outcome of this effort, as needed to reduce the improved process to daily practice, but it is not the effort itself.

And the resulting documentation is not Standard Work. Standard Work, in the Toyota lexicon, is about takt time, work sequence, and required WIP, it doesn’t include process capability or even work instructions at the individual station level. It is only about the way you combine them in a line or a cell.

Is Standard Work the Best Known Way?

Most the Lean literature depicts Standard Work as an improvement backstop, a formalization of the improved process for the purpose of preventing backsliding. The following video is a quaint example of a PowerPoint animation used by a consultant to make that point. Note the yellow block preventing the wheel rolling back down:

Standard Work as “the best known way of doing the task” is the improvement backstop view, which I held without questioning it until I saw two articles disagreeing with it, and with each other, by Art Smalley .and Mike Rother. Mike Rother sees standard work as a target to shoot for rather than a backstop. Following is his rolling-wheel diagram:

Mike Rother's standard as a target condition

Mike Rother’s standard as a target condition

Yet another version was included in John Hunter’s review of Gemba Walkabout, and it shows standard work used to block progress instead of helping.

pdsa_blocked

These rolling-uphill diagrams remind me of the myth of Sisyphus, as described by Albert Camus. Sisyphus was a man condemned by the Gods to roll a boulder uphill everyday only to see it roll back down and start over, for eternity. See the following rendition by Marcell Jankovics:

Even if Sisyphus had had a backstop, it does not strike me as a particularly attractive metaphor for Kaizen.

Art Smalley sees Standard Work as a point of reference against which to measure future improvement. Taiichi Ohno does not say much about it in “Toyota Production System,”  but in Workplace Management,  he writes:

“There is something called ‘Standard Work,’ but standards should be changing constantly. lnstead, if you think of the standard as the best you can do, it’s all over. The standard is only a baseline for doing further kaizen. lt is kai-aku if things get worse than now, and it is kaizen if things get better than now. Standards are set arbitrarily by humans, so how can they not change?

When creating Standard Work, it will be difficult to establish a standard if you are trying to achieve “the best way.” This is a big mistake. Document exactly what you are doing now. lf you make it better than now, it is kaizen. lf not, and you establish the best possible way, the motivation for kaizen will be gone.

That is why one way of motivating people to do kaizen is to create a poor standard. But don’t make it too bad. Without some standard, you can’t say “We made it better” because there is nothing to compare it to, so you must create a standard for comparison. Take that standard, and if the work is not easy to perform, give many suggestions and do kaizen.”

John Shook on Standard Work

John Shook published three e-Letters on the subject of Standard Work in October 2009, called “Five missing pieces in your standardized work.”

In Part 1, he describes the goal of having the same work done the same way everywhere as distinct from Standard Work. He calls it “commonization” as a translation of 横伝(Yokoten). Literally, Yokoten means “lateral transfer,” but it is meant about know-how, not people. You invented a better way to do a job, and you propagate it to everybody else who does the same job.

When he discusses the distinction between Standard Work and Work Standards, Shook includes under Work Standards not just the time a task is supposed to take but all its technical parameters, such as critical dimensions, tolerances, etc.

He describes Kaizen and Standard Work as two sides of the same coin. You can’t have Kaizen unless you have Standard Work as the basis for improvement, and a Kaizen project is not finished until its outcome is incorporated in Standard Work. But Standard Work as he describes it —  with work combination charts — is used almost nowhere in American plants that claim to practice Kaizen. This means that some of the following must be true:

  1. The definition of Standard Work is too narrow. The need to specify takt times, work sequence and standard WIP is general, but different tools can be used to do it in different types of plants. A work combination chart, for example, is of limited value in a manual assembly process.
  2. Most plants that claim to practice Kaizen really don’t. In Japan, Kaizen designates small improvements to work methods, conceived and executed by the people who do the work, and US-style “Kaizen Events” are not Kaizen at all. A plant may run 50 Kaizen events per year and still not practice Kaizen. The means of implementing Kaizen include suggestion systems, that exist in many plants with varying success, and small-group, circle activities, that, in the US, are only found in Japanese transplants. As “Quality circles,” in the US, they were a fad in the 1980s; as Jon Miller pointed out in Quality Digest in 2011, circles are still going strong in Japan and in the rest of Asia.
  3. Some Kaizen activity is possible without Standard Work. What you really cannot do without is some metrics of before-and-after performance for the area that is improved, and these may be measured without Standard Work being in place.

The bulk of Part 2 is an example from Shook’s own experience on the Toyota assembly line in Takaoka in 1984. In Part 3, he describes Standard Work through the Purpose, Process and People framework, which he calls 3P. I had heard the “3P” acronym used before, by Shingijutsu people as the “Production Preparation Process,” which is something completely different.

Standard Work versus Work Standards

John Shook gives the following as examples of Work Standards:

  • Assembly – apply xx pounds of torque
  • Processing – heat treat at xxx degrees for x hours
  • Healthcare – provide xx medication at xx dose
  • Coffee – xx seconds for an espresso shot
  • Journalism – a weekly column of xxx words
Frederick Taylor quote

Frederick Taylor quote

Last month, the Institute of Industrial Engineers (IIE) had a conference in Chicago on “Managing Work Standards.” It was exclusively about how long it takes to do work, not about what the work is. It is a sensitive topic because it is associated in the minds of production operators with Taylor’s “scientific management” and his determination to prevent operators from colluding to curtail output, which he called “soldiering.” For all his great contributions, respect for humanity was not Taylor’s strong suit. He probably would have said that this man should have borrowed money from his parents to start a business…

What we are doing when analyzing video recordings of operations is more in line with what Frank and Lillian Gilbreth did: observing processes in order to improve them. The difference in thinking is obvious from just viewing the films the Gilbreths made about bricklaying operations.

The Gilbreths were working to make the bricklayers’ job easier, not to make them exert more effort, but Taylor’s name is better known, and his legacy is a challenge to live down.

I think we need to improve the terminology. Having two different concepts called “Standard Work” and “Work Standards” is confusing, especially when Toyota uses “Work Standards” to mean something other than the IIE. Incidentally, it is confusing in Japanese too.

How about using “Work Instructions” for what Shook calls “Work Standards”?

What is the Scope of Standard Work?

What is the scope of Standard Work? I have seen described, I don’t remember where, as the process as seen through the eyes of a first-line manager — also currently known as production supervisor, group leader, or area coordinator, and formerly as foreman. This is a member of management, with direct responsibility for quality, cost, and delivery by a few teams of operators.

This person sees the work as a sequence of tasks to which operators are assigned and among which they rotate as needed. The technical and human unit processes at each station are the foundation on top of which the supervisor works. This would be why Standard Work is focused on takt time, work sequence and work combinations, as opposed to tolerances and job instruction (JI).

Standard Work, Yokoten, and Revision Management

Also, Standard Work comes in the form of documents that are seen on the shop floor and that people are expected to follow. This makes them official, with revision numbers and approval stamps by stakeholders. Revision management on Standard Work is a whole other topic that I have not seen discussed anywhere.

Is Standard Work a Proper Focus for a Project?

Standard Work is a 2nd tier tool, like Visual Management, meaning that it is part of every project but never the focus of a project in its own right. In a brownfield situation, making “Standard Work” a project would lead you to attempt the precise documentation of work methods that need to be changed anyway, which would not be terribly useful and could bog you down for so long that you never get to do anything else.

On the other hand, if you identify specific dysfunctions in a process and organize a project to fix them, then you want the new and better way to be documented in such a way that it can be propagated across shifts and to other shops that do the same work.

Is Every Problem a Deviation from a Standard?

Peter Winton feels strongly that it is. And this is about standards in general, not just Standard Work. If every problem is a deviation from standards, however, we have an easy way of solving all our problems: let us just scrap the standards… But it would not solve all our problems, would it?

It would solve some problems, because there are futile standards. As David Meier pointed out, when you set a standard, you create an opportunity for deviation, and the need to respond to these deviations. So don’t standardize what you don’t need to.

The absence of a standard can be a problem. I remember a 2-in binder of specs on how to inspect an aerospace part that did not actually contain objective criteria for rejecting a part.

More generally, Standard Work, Job Instructions, Acceptance Specs, etc. are documents that are necessary to ensure a consistent output but not sufficient to guarantee that products will work for customers.

Products that are perfect on our terms may still displease customers, because they are using them in ways we didn’t anticipate. That is a problem, but it is neither the lack of a standard nor a deviation from any standard.

From what you write, I assume that you consider a standard to be an explicit statement of what should be, whether it is expressed as “this bolt should be tightened to x foot-pounds of torque,” or “this bolt should be tightened until the nutrunner’s light goes green.”

There are problems that cannot be expressed as a deviation from standard. As we all know, the proof of a cake is in the eating, which means that it cannot be tested before leaving the pastry shop. You serve this untested cake to your guests and it’s awful. The taste of the cake, in Juran’s terms, is a true characteristic. It is really what you are after but, more often than not, it is something you don’t know how to measure, and you can’t set a standard for.

You can measure some substitute characteristics of the cake, like its diameter, sugar content, or fat content. For these substitute characteristics, you can have specs to deviate from, and, if a cake is out of spec, you know it’s bad. It is, however, possible for a cake to meet all the specs you have defined and still taste awful. Whatever standards you define work as a one-way filter. What they allow you to reject is defective, but you don’t know that what they let through is not.

Philip Crosby

Philip Crosby

Joseph M. Juran

Joseph M. Juran

This was the old debate between Philip Crosby, for whom quality was “compliance to requirements,” and Juran, for whom it was “the agreement of reality with expectancy.” These are different philosophies, leading to different practices. For engineering students, for example, the Crosby approach would equate scoring As on exams with being a good engineer; in the Juran approach, there is more to it.

Is it “Standard Work” or “Standardized Work”?

It is “Standardized Work” that is the questionable translation. The Japanese term is 標準作業 (Hyojun Sagyo). 標準 (Hyojun) means Standard and 作業 (Sagyo) means work. Google translates 標準作業 to Standard Work and Standard Work to 標準作業. If you translate “Standardized Work” into Japanese, you get 標準化された作業 (Hyojunka sareta sagyo) and more syllables on both sides. I prefer the shorter version.

The same concept is called “Standard Work” by Ohno, “Standard Operations” in the JMA’s ‘Kanban, Just-in-Time at Toyota” and in Monden’s “Toyota Production System,” and “Standardized Work” in the LEI Lean Lexicon and on the Toyota Georgetown website.

If the terms were intended to designate different things, they should be more distinctive. I actually don’t think either one makes much sense because they are too generic and not descriptive. If you hear “page scanner” for the first time, you guess accurately what it does; for “Standard Work” or “Standardized Work,” good luck! Everybody thinks they know what it means, but all interpret it differently, which does not help communication.

Standard Work for Leaders and Managers

David Hayden brought up the subject of Standard Work for leaders, managers, and engineers. I see all jobs as routinely involving a mix of the following:

  • Repetitive tasks
  • Planned responses to events
  • Decision making in the face of unplanned events.

For production operators, it is mostly repetitive taks; for CEOs, mostly decision making. Standard Work, if defined as the combination of takt time, work sequence and standard inventory, is only applicable to production operators. In a broader sense, it can be applied to all repetitive activities.

A team leader in a cell, for example, does production work for about 50% of the takt time, and, in addition, is responsible for

  1. Maintaining the pace.
  2. Relieving other team members as needed.
  3. Supplying materials and tools to other team members.
  4. Keeping records.
  5. Coordinating changeovers.
  6. Coordinating 5S at the end of the shift.

Planned responses are not Standard Work in the strict sense. As far as I know, within Toyota in the US, they are organized under “Change Point Management” (CPM). In Japanese, as Casey Ng pointed out, it is called 変化点管理 (Henkatenkanri). About the scope of CPM, he wrote:

“For change point management such as a change in takt time , the introduction of new members to a  line, preparation to shut down, startup after week-end, resuming production after a power failure, introducing a new product, changing of new version of parts etc. There are all sort of standards which may generally call Standard Work.”

Standard Work and Project Management

Len Canoot asked whether the elements of Standard Work were translatable to project management.

The time it takes to do the work is the process time or the cycle time, not the takt time. In a line that works at a steady pace, the takt time is the interval between consecutive unit completions in order to meet the schedule within the work time available.

Does it translate to projects? It depends what kind of projects. If all your projects are “Kaizen events,” each one takes 11 weeks: 6 weeks of preparation, 1 week of focused activity, and 5 weeks of follow-up. It is a standard process, and you can to run them at fixed intervals in different areas of your plant. Most projects, however, are not reducible to this kind of cookie-cutter approach.

In a more general setting, there are tools you can use to manage a flow of projects, like capping the number in progress, so that participants’ attention is not spread too thin. At the very least, all your projects are either waiting to start, in progress, or finished. Often, however, they all go through a more detailed, common sequence of phases through which you can track them, even though the work required for a project through a given phase may vary.

Does that add up to standard work for projects?

Standard Work versus Standards in general

About the usual meaning of standard, this is what Wikipedia says about technical standards:

“A technical standard is an established norm or requirement in regard to technical systems. It is usually a formal document that establishes uniform engineering or technical criteria, methods, processes and practices.”

That covers the metric system and the internet protocols. Wikipedia also says the following about Standard Operating Procedures (SOP):

“In clinical research, the International Conference on Harmonisation (ICH) defines SOPs as ‘detailed, written instructions to achieve uniformity of the performance of a specific function’.”

When I see “detailed, written instructions,” it makes me think of the victorian-novel sized instruction binders that sit on shelves in many plants, unread, dusty, and full of obsolete information. Standard is also used in many other ways.

Standard Work and Changes in Takt Time

Anders Penker brought up the issue of the effect of changes in pace on Standard Work. One key reason you set up U-shaped cells, with the operator work area inside, is staffing flexibility. If it takes, say, 5 operators to operate at capacity, you can operate with 3, 2 or 1 operator at reduced rates, as seen below:

Takt time change in cells

Of course, your work chart and work combination chart for 6 operators are not applicable when you only have 4 or 3. But operating at a reduce pace with fewer people is something you can anticipate and plan for. You should have Standard Work ready for these circumstances, and post it as needed.

And there are circumstances where these charts are not applicable, for example when you apply the bucket-brigade method to make custom-configured products. But that is a different topic.

This “respect for people stuff”

The following two-minute dialogue between Jeffrey Liker and British consultant John Seddon has caused a stir in the US, primarily for Seddon’s saying “…all this respect for people stuff  is horseshit…”

Note: For a video of the full 45-minute session from which it is excerpted, see Panel discussion – Lean Ísland 2012 (08). The third participant in the conversation, the woman sitting between Jeffrey Liker and John Seddon is Yr Gunnarsdottir.

While dramatically stated, Seddon’s point is actually not that controversial. If you listen closely, he says that respect for people is not a “point of intervention,” meaning not a subject for which you bring in consultants or start projects. Mark Graban pointed out that he had never seen a company have a respect-for-people project, and I never have either. In his comments on Graban’s post, Rob van Stekelenborg writes “Still, more and more often I notice, Lean is attempted primarily as a leadership and a formalized (thru methods), bottom-up continual improvement effort without much attention for the strong industrial engineering roots it also has.” While I agree with Rob, I am not sure this is what Seddon meant.

Digging deeper, the following paragraphs quote some of my preferred authors/bloggers on the subject, with my own comments added:

Jeffrey Liker on Taiichi Ohno’s people skills

The video starts with Seddon asking Liker to rate Taiichi Ohno’s people skills  in a short answer, and Liker answers “terrible.” I would not have answered that. By whatever means he accomplished it, Ohno got thousands of people to work with him to develop and deploy the Toyota Production System, and it makes him only one in a long line of effective business leaders, sports coaches, and military commanders who don’t ooze charm from every pore.

My understanding of people skills is as the art of working with, through, and for other people and that the degree to which a person possesses these skills is measured not by their manners but by their achievements. Some of Ohno’s statements on people issues are surprising. Ohno’s open bursts of anger were not due to lack of self-control but were on purpose, as he explains on p. 93 of Workplace Management:

“I never get angry at the workers. However, with supervisors and above I will get very angry. The gemba is a convenient place to get angry at people. There is a lot of noise so they can’t really hear what l am saying. When I scold the supervisors on the gemba, the workers see that their boss is being yelled at and they sympathize with their boss.

Then it becomes easier for that supervisor to correct the workers. lf you call the supervisor away to a dark corner somewhere to scold him, the message does not get through. The gemba is a noisy place anyway, so if l am yelling at them and the person being scolded doesn’t really know why they are being scolded, this is okay. However, when the workers see their boss being scolded and they think it is because they are not doing something right, then the next time the supervisor corrects them, they will listen.”

For a higher-level manager never to scold workers is consistent with standard management practice going back to Sun-Tsu. On the other hand, that you should publicly scold supervisors for no particular reason in front of their subordinates to generate sympathy and make it easier for supervisors to do their jobs is a strange idea.  I have never done it, nor have I ever recommended it. In the plants I am familiar with, sympathy for supervisors among operators is in short supply, and a public scolding would do nothing more than undermine their limited authority.

Yet, I don’t think Ohno would write this unless it had worked for him as a manager at Toyota. As he explains, he was trained to praise in public and criticize in private, but he did the opposite on purpose. Had he failed, you could use this practice as evidence of terrible people skills, but he didn’t fail.

Art Smalley on the meaning of respect for people

Back in 2010, Art Smalley gave a detailed explanation of what respect for people means in the Toyota context, as he experienced it while working there. In a recent post on the ISPI conference in Reno, I wrote “Lean relies on people to improve operations, provides them with safe and secure jobs, and supports their professional development as a strategy for the company to gain market share, enhance profits, and grow.” While it was not my intention, I think it summarizes Art’s points.

Art also quoted the following excerpt from a TWI Job Relations training manual from World War II as evidence that it is not a new concern:

JR training manual excerpt

But we can dig further. In The Visible Hand, p. 69, Alfred Chandler quotes British textile expert James Montgomery writing in 1832, that “To assure good feeling and understanding, while guarding against too much lenity (modern: leniency) on the one hand, to be careful to avoid too much severity on the other, […] be firm and decisive in all measures, but not overbearing and tyrannical  — not too distant and haughty, but affable and easy of access, yet not too familiar.”

In other words, since the industrial revolution, advisers have been telling manufacturers that it was good business to show respect to their employees, but few have acted on this advice. Taylor’s “scientific management” went in the opposite direction, and so did Ford in its early assembly lines. It could be explained by the prevalence of immigrants from many different countries with limited education in the manufacturing work force of early 20th century America. But  in California 100 years later, Injex was using TPS to make auto parts for Toyota with great success and a workforce with 19 different nationalities and varied levels of education and English proficiency.

Mark Graban on Toyota, Respect for People, and Lean

On 2/26, Mark Graban wrote an extensive rebuttal of Seddon, to which I had also added the following:

In concrete terms, I have found disrespect easier to explain than respect. For example, giving a person a job that requires doing nothing 50% of the time is saying “your time is worthless,” and therefore “you are worthless.”  Many managers do not realize how disrespectful this attitude is, particularly where labor is cheap.

Ignoring complaints about minor safety issues, like sharp edges on a cart, is also showing disrespect. There are many such issues that must be addressed before asking people to participate in improvement and contribute ideas. The Frank Woollard quote in Bob Emiliani’s comment explains why you should pay respect to your people. It’s not about being nice. In the long run, you cannot compete unless your organization fires on all intellectual cylinders.

Frank Woollard was a British industrial engineer in the 1920s, and Bob Emiliani’s quoted him saying:

“This principle of ‘benefit for all’ is not based on altruistic ideals – much as these are to be admired – but upon the hard facts of business efficiency.”

In his article, Mark includes a photo of an exhibit at the Toyota museum, that contains the following text:

Toyota museum photo from Mark GrabanIt is in English, Japanese, and Mandarin, but the titles have slightly different meanings. The Japanese title means “Respect for Humanity,” not “Respect for People,” and the Mandarin title means “People-oriented.” To be even more specific, in Japanese, ningensei (人間性) means humanity in the sense of human nature, not humankind, which would be jinrui (人類).

On the other hand, the English paragraph is an accurate translation from the Japanese and clarifies the difference in the titles. Saying “please” and “thank you” is showing respect for people, but it does not imply any consideration for their specifically human sensory, intellectual and cognitive abilities.

I don’t know what the paragraph in Mandarin says, but it is visibly shorter than the other two. Mandarin is concise, but not this concise.

Rob van Stekelenborg on teaching respect for people

Rob van Stekelenborg,  blogging as Dumontis, also posted on this subject, introducing the new word “resp-act.” What Rob does here is go beyond general statements and give examples of how to show respect for people in situations involving suppliers, customers, or employees.

After all the theorizing on the true meaning of respect for people, it remains a vague and fuzzy guideline for anyone on a  shop floor today and tomorrow, and what Rob does to bring it into focus reminds me of the Critical Incident Technique I heard about from Steven Villachica at the ISPI conference.

Finding local roots for Lean – Everywhere

Lean is from Japan, and even more specifically from one Japanese company. Outside of Japan, however,  the foreign origin of the concepts impedes their acceptance. In every country where I’ve been active, I have found the ability to link Lean to local founders a critical advantage. The people whose support you need would like to think that Lean was essentially “invented here,” and that foreigners at best added minor details. Identifying local ancestors in a country’s intellectual tradition takes some research, and then you may need to err on the side of giving more credit than is due.

Feeder line at Ford

In the US, using the word “Lean” rather than TPS is already a means of making it less foreign, and it is not difficult to paint Lean as a continuation of US developments from the 19th and 20th century, ranging from interchangeable parts technology to TWI. Ford’s system is a direct ancestor to Lean, as acknowledged by Toyota. On this basis, the American literature on Lean has gradually been drifting towards attributing Lean to Henry Ford. Fact checkers disagree, but it makes many Americans feel better.

Elsewhere, it is not as obvious to find a filiation. Following are a few examples of what I found:

  • Russia has Alexei Gastev, who started an industrial engineering institute in Moscow in 1920, was shot by Stalin in 1939 and largely forgotten afterwards, but our OrgProm colleagues have now named a prize after him, that is given to Russian companies for excellence in manufacturing. It was awarded for the first time in 2011. Here are, from 1924, Gastev’s 9 steps to automate a riveting operation:

Gastev’s 9 steps to automated riveting

  • Poland has Karol Adamiecki, whose “harmonogram” is the same as a Gantt chart, and was invented independently and a few years earlier. If you google “harmonogram,” you get pictures of Gantt charts. I am sure there must be some differences between the two, however minor, but I can’t tell what they are.
  • Italians can connect Lean to the shipyard in which Venetians assembled galleys in the Renaissance. Jim Womack identified it as a early flow line. As he wrote in Walking Through Lean History:

“…  Dan Jones visited the Arsenal in Venice, established in 1104 to build war ships for the Venetian Navy. Over time the Venetians adopted a standardized design for the hundreds of galleys built each year to campaign in the Mediterranean and also pioneered the use of interchangeable parts. This made it possible to assemble galleys along a narrow channel running through the Arsenal. The hull was completed first and then flowed past the assembly point for each item needed to complete the ship. By 1574 the Arsenal’s practices were so advanced that King Henry III of France was invited to watch the construction of a complete galley in continuous flow, going from start to finish in less than an hour.”

Galley assembly hall in Venice

Britain, as the Olympic opening ceremonies reminded us, was home to the industrial revolution. In terms of worldwide share of market for manufactured goods, however, Britain peaked about 1870, and the thinkers that come to mind about British manufacturing are economists like Adam Smith or David Ricardo, whose theories were based on observations of early manufacturing practices, but whose contributions were not on the specifics of plant design or operations. They are too remote to be linked in any way to Lean.

For France, I have asked everybody I know there for nominations but have yet to receive any. The French have invented many products and processes, but I have not been able to identify French pioneers in production systems who could provide a link to Lean. And there are many other countries where the search may be fruitless.

Even though people in China and India have been making things for thousands of years,I don’t know any names of local forerunners of Lean in these countries. China has only emerged as a world-class manufacturing power in the last few decades and I have, unfortunately, never been to India. There are many other countries on which I don’t have this kind of information, and nominations are welcome.

What are standards for?

Many discussions of standards in a Lean context do not address purpose. In Manufacturing, product quality cannot be guaranteed unless the same operations are done the same way on every unit, regardless of time, shift, day, or even plant. This is why you need Work Standards and Job Breakdown Sheets. To achieve high productivity, you then need to design operator jobs to fill up the takt time with useful work, consistently throughout their shift, and without overburdening them. This is the purpose of Standardized Work, which is visible in manual assembly in the form of Yamazumi charts and, where human-machine interactions are involved, Work-Combination charts.
What is remarkable in Lean plants is that management pays attention to standards and that operators actually follow them. Elsewhere, the standards are in 3-ring binders sitting unread on shelves and containing obsolete information, with the knowledge of how the work is actually done residing only in the heads of the people who do it (See Figure 1).
Figure 1. Operator instructions in binders
To make sure the binders are actually on the shelf and in the proper order, it is becoming common as part of 5S to run tape across the back as shown here. The primary purpose of such binders is to show their own existence to auditors. There usually is no space or music stand provided near operator work stations to hold then open. The content is usually based on verbose boiler plates and generated by writers who do not leave the offices. Clearly, this is not an effective method to direct how work is actually done. The Lean approach is to provide instructions in A3 sheets posted above each station. For examples, see Figures 2 and 3; for details, Lean Assembly, pp. 157-163 and Working with Machines, pp. 133-153.
Figure 2. Assembly instruction sheets for stations and Yamazumi Chart for an assembly line
Figure 3. Work-Combination Chart for Machining in a cell
The relationship between standards and Kaizen is complex. The existence of effective standards is not a precondition for improving operations, or else too many operations would be impossible to improve. Once standards are in place, however, they provide a baseline for future improvements.
In general, standards constrain what people do, and don’t work well when developing them turns into making rules for others to follow. An overabundance of standards, and rigid enforcement, can stifle the very creativity we want to nurture in the work force. There are two approaches to solving this dilemma that need to be used jointly:
  1. Avoid unnecessary standards.
  2. Have the standards include a transparent and simple process for improving them.

Avoiding unnecessary standards

Consulting for Motorola some years ago, I remember being shown a stack of organization charts from at least 20 engineering groups, and no two of them were in the same format. There were all sorts of rectangular or rounded boxes and straight of curved connections. Most were in the usual pyramid shape, but some were inverted, with the manager at the bottom and the individual contributors on top. All charts were equally easy to read, but there was also a clear message: “We are a company of 40,000 entrepreneurs, and we don’t standardize what doesn’t need to be.”

Unnecessary or counterproductive standards

The opposite extreme is the German standard (DIN) that specifies the size of the balls at the end of motorcycle brake handles. According to Kei Abe, who designed motorcycles at Honda in the 1960s, when Soichiro Honda found out about this standard, he said: “The German motorcycle industry is doomed.”
Figure 1. Ball at the end of motorcycle brake handle
Employee email addresses are an area where standardization is directly detrimental to the objectives pursued by the company. Except for those involved with sales or public relations, most companies do not publish their employees’ professional email addresses, so as to protect them from spammers and recruiters. Yet they generate these addresses in standard formats, the most common being first-name.last-name@domain-name.com. This standard is easily inferred from the business card of a single employee, and enables any outsider to build an email list by retrieving names from a social network and formatting them to the standard.

Necessary standards

In Manufacturing, here are some examples where standards are necessary but frequently not in place, starting with the most obvious:
  • System of units. In US plants of foreign companies, it is not uncommon to encounter both  metric and US units. Companies should standardize on one system of units and use it exclusively.
  • Technical parameters of the process, such as the torque applied to a bolt, or die characteristics in injection molding, diecasting, or stamping.
  • Instruction sheet formats. Supervisors who monitor the work with the help of instruction sheets posted above each station need to find the same data is the same location on the A3 sheet everywhere.
  • Operator interfaces to machine controls. Start, and emergency stop buttons should look alike and be in consistent locations on all machines. So should lights, sounds, and messages used for alarms and alerts.
  • Andon lights color code. Andon lights are useless unless the same, simple color code is used throughout the plant, allowing managers at a glance to see which machines are working, idle, or down.
  • Performance boards for daily management. Having a common matrix of charts across departments is a way to ensure that important topics are not forgotten and to make reviews easier. For a first-line manager, for example, you may have columns for Safety, Quality, Productivity and Organization, and rows for News, Trends, Breakdown by category, and Projects in progress.

Corporate Lean groups and standards

At the corporate level, standards are necessary for operational data provided by the plants. On the other hand, it is easy for Corporate to overreach in mandating management and engineering practices at the plant level. Corporate Lean groups, for example, have been known to demand current and future state Value-Stream Maps from every shop of every plant as a standard. Such maps are then dutifully produced by people who do not always understand the technique and its purpose, and whose organizations may be functional departments rather than Value Streams. These maps are then
posted on walls for visitors to see.
More generally, corporate Lean groups should refrain issuing standards that mandate implementation tactics at the plant level. Tom DeMarco made a useful distinction between methods and methodologies. Methods are like tools in a box: as a professional, you pick which ones to use as needed to solve the problem at hand. A methodology, on the other hand, walks you through a sequence of 12 steps that supposedly leads to a solution regardless of what the problem is. A methodology is an excuse for not thinking; it turns people into what DeMarco calls “template zombies.” He writes about software development, but there are template zombies in Manufacturing.
The rigidity associated with methodological thinking is best illustrated by the following story on exam questions:
Question 1: How to boil water?
Answer 1: Take a pot, fill it up with water, place it on the stove, turn on the burner, and wait.
Question 2: How to boil water, when you already have a pot of cold water on the stove?
Answer 2: Empty the pot, put it away, and you are back to Question 1.
Not only do methodologies make you do unnecessary tasks, but they also restrict your achievements to what they can be effective for. In many companies that have corporate Lean programs, as a plant manager or engineer, you will get no credit for improvements by any means other than the standard methodology, and may even lose your job for failing to apply it, regardless of your results.

Instead of trying to develop and enforce a standard, one-size-fits-all methodology for all of a company’s plants — whose processes may range from metal foundry to final assembly — the corporate Lean group should instead focus on providing resources to help the plant teams develop their skills and learn from each other, but that is a different discussion.

Process for improving standards

When a production supervisor notices that an operator is not following the standard, it may mean that the operator needs to be coached, but it may also mean that the operator has found a better method that should be made the standard. But how do you make this kind of local initiative possible without jeopardizing the consistency of your process? The allowed scope for changes must be clear, and there must be a sign-off procedure in place to make them take effect.

Management policies

I remember an auto parts plant in Mexico that had dedicated lines for each customer. Some of the customers demanded to approve any change to their production lines, even if it involved only moving two machines closer, but other customers left the auto parts maker free to rearrange their lines as they saw fit as long as the did not change what the machines did to the parts. Needless to say, these customers’ lines saw more improvement activity than the others.

In this case, the production teams could move the torque wrench closer to its point of use but they could not replace it with an ordinary ratchet and a homemade cheater bar. The boundary between what can be changed autonomously and what cannot is less clear in other contexts. In milling a part, for example, changing the sequence of cuts to reduce the tool’s air cutting time can be viewed a not changing the process but, if we are talking about deep cuts in an aerospace forging, stresses and warpage can be affected by cut sequencing.

If a production supervisor has the authority to make layout or work station design changes in his or her area of responsibility, it still must be done with the operators, and there are several support groups that must be consulted or informed. Safety has to bless it; Maintenance, to make sure that technicians still have the required access to equipment; Materials, to know where to deliver parts if that has changed. Even in the most flexible organizations, there has to be a minimum of formality in the implementation of changes. And it is more complex if the same product is made in more than one plant. In the best cases, when little or no investment is required, the changes are implemented first, by teams that include representations from all the stakeholders, and ratified later. We can move equipment on the basis of chalk marks on the floor, but, soon afterwards, the Facilities department must have up-to-date layouts.

The more authority is given to the local process owners, the easier it is to implement improvements, but also the more responsibility upper managers assume for decisions they didn’t make. The appropriate level of delegation varies as Lean implementation progresses. It starts with a few, closely monitored pilot projects;  as the organization matures and develops more skills, the number of improvement projects explodes, and the local managers develop the capability to conduct them autonomously. At any time, for the upper managers, it is a question of which decisions pass the “sleep-at-night” test: what changes can they empower subordinates to make on their own and still sleep at night?

Generating effective standards

If there is a  proven method today to document manufacturing processes in such a way that they are actually executed as specified, it is Training Within Industry (TWI). The story of TWI is beginning to be well-known. After being effective in World War II in the US, it was abandoned along with many wartime innovations in Manufacturing, but lived on at Toyota for the following 50 years before Toyota alumni like John Shook revived it in the US.

There are, however, two limitations to TWI, as originally developed:

  1. It is based on World War II information technology. It is difficult to imagine, however, that if the developers of TWI were active today, they would not use current information technology.
  2. It includes nothing about revision management. There is a TWI Problem-Solving Manual (1955), and solving a problem presumably leads to improving the process and producing a new version of job breakdown, instructions, etc. This in turn implies a process for approving and deploying the new version, archiving the old one and recording the date and product serial numbers of when the new version became effective.

Revision management

The developers of TWI may simply have viewed revision management as a secondary, low-level clerical issue, and it may have been in their day. The pace of engineering changes and new product introduction, however, has picked up since then. In addition, in a Lean environment, changes in takt time every few months require you to regenerate Yamazumi and Work Combination charts, while Kaizen activity, in full swing, results in improvements made to thousands of operations at least every six months for each.

In many manufacturing organizations, the management of product and process documentation is slow, cumbersome, and error-prone, particularly when done manually. Today, Product Documentation Management (PDM) is a segment of the software industry addressing these issues. It is technically possible to keep all the standards, with their revision history, in a database and retrieve them as needed. The growth of PDM has not been driven by demands from the shop floor but by external mandates like the ISO-900x standards, but, whatever the reasons may be, these capabilities are today available to any manufacturing organization that chooses to use them.

Using software makes the flow of change requests more visible, eliminates the handling delays and losses associated with paper documents, allows multiple reviewers to work concurrently, but it does not solve the problem of the large number of changes that need to be reviewed, decided upon, and implemented.

This is a matter of management policies, to cover the following:

  1. Making each change proposal undergo the review process that it needs and no more than it needs.
  2. Filtering proposals as early as possible in the review process to minimize the number that go through the complete process to ultimately fail.
  3. Capping the number of projects in the review process at any time.
  4. Giving the review process sufficient priority and resources.

Templates

In principle, revision management can be applied to any document. In practice, it helps if the documents have a common structure. If they cover the same topics, and the data about each topic is always in the same place, then each reviewer can immediately find the items of interest. This means using templates, but also walking the fine line to avoid turning into DeMarco’s template zombies.

If you ask a committee of future reviewers to design an A3 form for project charters, it will be a collection of questions they would like answered. Accountants, for example, would like to quantify the financial benefits of projects before they even start, and Quality Assurance would like to know what reduction in defective rates to expect… Shop floor teams can struggle for days trying to answer questions for which they have no data yet, or that are put in a language with acronyms and abbreviations like IRR or DPMO that they don’t understand. More often than not, they end up filling out the forms with text that is unresponsive to the questions.

The teams and project leaders should only be asked to answer questions that they realistically can, such as:

  • The section of the organization that is the object of the project, and its boundaries.
  • The motivation for the project.
  • The current state and target state.
  • A roster of the team, with the role of each member.
  • A crude project plan with an estimate for completion date.
  • A box score of performance indicators, focused on the parameters on the team performance board that are reviewed in daily meetings.

The same thinking applies to work instructions. It takes a special talent to design them and fill them out so that they are concise but sufficiently detailed where it matters, and understood by the human beings whose activities they are supposed to direct.

Display

It is also possible to display all instructions on the shop floor in electronic form. The key questions are whether it actually does the job better and whether it is cheaper. In the auto parts industry, instructions are usually posted in hardcopy; in computer assembly, they are displayed on screens. One might think that the computer industry is doing it to use what it sells, but there is a more compelling reason: while the auto parts industry will make the same product for four years or more, 90% of what the computer industry assembles is for products introduced within the past 12 months. While the auto parts industry many not justify the cost of placing monitors over each assembly station, what computer assemblers cannot afford is the cost and error rate of having people constantly post new hardcopy instructions.

In the auto industry, to provide quick and consistent initial training and for new product introduction in its worldwide, multilingual plants, Toyota has created a Global Production Center, which uses video and animation to teach. To this day, however, I do not believe that Toyota uses screens to post work instructions on the shop floor. In the assembly of downhole measurement instruments for oilfield services, Schlumberger in Rosharon, TX, is pioneering the use of iPads to display work instructions.

Using iPads, QR scans, Sharepoint and Infopath to implement TWI

Franck Vermet‘s group at Schlumberger in Rosharon, TX, assembles and tests measurement instruments that operate deep inside oil wells. They are built for internal use by Schlumberger Oilfield Services, to collect data for customers. They are high-value products, with tight tolerances and the ability to operate in an environment that is not friendly to electronics.
With Mark Warren‘s help, Vermet’s group has been looking to TWI as a way to rely less on knowledge in the heads of experienced operators and more on documented processes for the following purposes:

  1. To ensure that the same work is done the same way by different individuals.
  2. To train new operators faster.
  3. To improve the processes systematically and in a controlled manner.
  4. To support the implementation engineering changes to the products and new product introduction.

In World War II, however, TWI was implemented with cardboard pocket cards and handwritten Job Breakdown sheets, but the Schlumberger team was determined to use more modern technology. After investigating the available options, they realized the following:

  • Sharepoint has a built-in revision management system that makes a Sharepoint site suitable as a repository of process specifications. This helps with traceability and ISO compliance.
  • Infopath is a form design tool they could use to generate TWI templates and store the filled out Job Breakdown sheets in the Sharepoint site.
  • iPads are an effective presentation device on the shop floor, not just for the equivalent of pocket cards,  but for drawings and photographs as well.
  • QR scans linking to job instructions are posted on equipment by means of printed magnets. They can be scanned using an iPad to retrieve the instructions from the Sharepoint site.

Implementation is still in its early days, but all indications from users are that it works. It should be noted also that the approach is sound from the point of view of data management. Unlike the proliferation of Excel spreadsheets that is so often seen in factories, with more or less accurate and up-to-date copies of master data floating around, this approach provides the necessary controls, with the current data retrieved from the server as needed.

As could be expected, the Schlumberger team is facing headwinds from two directions:

  • Among the TWI revivalists, there are those for whom, if it’s not handwritten on cardboard, it isn’t TWI, and they frown on the use of a gadget like the iPad. Never mind that many retail shops already use them as point-of-sale systems.
  • Within the company, TWI-authenticity is nor a concern, but the uncontrolled spread of computer and networking technology is, at least for the IT department. It supports the use of a standard configuration of tools, which does not include what Vermet’s group is using.

The Schlumberger team is  now training suppliers in these tools with the goal of getting them to inspect outgoing parts in such a way that incoming inspection at Schlumberger can be eliminated.